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SUMMARY

The present work advances and documents the ability of an unstructured Cartesian

grid based formulation to model hypersonic viscous flows. This capability is investigated

in the solution adaptive solver NASCART-GT. In particular, the effectiveness of modeling

viscous phenomena in hypersonic flows using the immersed boundary ghost cell methodology

of this solver is examined.

Preliminary comparisons of the surface pressure coefficient, the skin friction coefficient

and the convective heat transfer rate predictions for hypersonic flow of argon gas past a 2-D

cylinder for a set of Reynolds numbers are made with reference results from a DSMC code

and a structured grid CFD solver. Here, the relation between the accuracy of these pre-

dictions with the surface cell size is emphasized. Additionally, the correlation between the

smoothness of these predictions and the grids used in these simulations is also investigated.

To demonstrate the advantages of the unstructured Cartesian grid in capturing complex

flow physics, a hypersonic axisymmetric test case that involves the interaction between a

shock wave and a boundary layer, and a separation bubble is chosen. Comparisons of the

surface pressure coefficient and the heat transfer rates for this cases are made with exper-

imental results, and the effects of the temperature clipping strategy used in the immersed

boundary ghost cell approach are documented.

In each of these tests, novel strategies installed in the adaptive mesh refinement technique

of NASCART-GT are explained. Further, to demonstrate that the solver can make good

predictions of convective heating at the surface, a range of freestream Mach numbers are

chosen, and the overall trend of the predictions are compared with experimental results and

empirical estimates for an axisymmetric hemisphere.

Finally, the inviscid thermochemical nonequilibrium solver in NASCART-GT is ex-

tended to compute viscous flows by including diffusion terms in the species and energy
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conservation equations. Collision cross-section based transport coefficients are also imple-

mented to compute viscosity, thermal conductivity and the species diffusion coefficients.

First, comparisons of off-surface flow features for a 2-D cylinder in hypersonic reacting air

flow are made with solutions from a body-fitted grid solver. Next, comparison of the stag-

nation point heat transfer rate in a thermochemical nonequilibrium environment is made

with the same body-fitted grid solver for a similar 2-D cylinder geometry, thereby demon-

strating the ability of the immersed boundary ghost cell methodology to make good surface

predictions in a hypersonic environment.

Overall, the immersed boundary ghost cell approach in the unstructured Cartesian grid

framework makes good predictions of the physics and chemistry of hypersonic reacting flows,

and compares well with both experiments and body-fitted grid results. The off-surface

physics and chemistry agree very well even with coarse grids being used for the simulations.

The surface properties have more stringent requirements with respect to surface cell sizes,

and compare very well when the thermal boundary layer is resolved adequately.
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CHAPTER I

INTRODUCTION

Aerothermodynamics combines the study of the aerodynamics and thermodynamics associ-

ated with high speed flight. It is an integral component in the design and implementation

of hypersonic transport systems. Vehicles that travel at speeds of around 10 km/s during

entry/re-entry scenarios encounter temperatures that are severe, of the order of 10,000 K,

and this significantly impacts the design and materials relative to other applications. For

example, during the re-entry of the Stardust probe in January 2006, which was sent out

to collect interstellar dust samples from two different solar orbits as it flew through the

coma of comet Wild 2, a re-entry speed of 12.8 km/s was reached [3, 69, 62], which is the

maximum ever by a man-made object. The peak stagnation temperature seen was around

25,000 K, which far exceeds the 6,000 K temperature of the photosphere of the Sun [1].

Figure 1: NASA’s Stardust sample return capsulea

ahttp://stardust.jpl.nasa.gov/photo/er capsule ground.jpg

Under such unforgiving conditions, it is critical that prior knowledge of the impending

flow environment is available beforehand to ensure a safe and effective design of these

transport vehicles. Accurate estimates of the aerodynamic forces and heat transfer rates

are critical in trajectory analysis and for payload weight considerations [31, 108].

1
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The prediction of the surface physics is particularly important under these circumstances

as it directly affects the design and materials of the TPS (Thermal Protection System).

Appropriate TPS design is essential for the survival of the payload which may include critical

expensive scientific equipment and/or life in the form of astronauts. Such deliberations, in

turn, affect the weight of the payloads of these transport systems, as well as the choice of

the propulsion system itself. Looking at the Stardust spacecraft again, the peak stagnation

heating during re-entry of the capsule reached 1,200 W/cm2. Special ablative TPS materials

had to be installed to protect the payload, which for this mission was an aerogel with cosmic

dust samples. In this case, NASA used PICA-15 (Phenolic Impregnated Carbon Ablators)

developed at Ames Research Center for the TPS, which took up nearly 22% of the total

mass of the probe. The ablative characteristics of PICA have been shown to withstand heat

flux magnitudes of up to 3,360 W/cm2 [95].

The extreme conditions encountered by a spacecraft during entry/reentry situations are

difficult to reproduce experimentally. High costs are incurred to generate the low pres-

sure/density and high enthalpy environments. The energy required to produce such condi-

tions can be unsurmountable, and the number of capable facilities equipped to conduct these

experiments are limited. Analytical expressions and empirical formulations make far too

many assumptions to have a wide range of applicability in hypersonic flow cases. Computa-

tional Fluid Dynamics (CFD) tools are a cheaper alternative to the experiments, and have

been used extensively with various levels of success over the past decades in the design of a

multitude of space probes: Mars Pathfinder [27, 66, 28], Stardust [69, 62], Huygens-Cassini

[44, 101], and the recent Mars Science Lab [23, 104, 24, 25], to name a few.

Advances in high performance computing trends have had a very positive impact on the

complexity of the simulations being conducted. Increasing computer speeds and reducing

costs of hardware have allowed for calculations to include more physical and chemical pro-

cesses in the flow. Problems that would generally take days and even weeks to complete a

decade ago can be run in significantly less time today. For example, the first instance of

computing hypersonic flows in thermochemical nonequilibrium was carried out almost two

decades ago for a simple 2-D test case [79]. Using a modest 50,000 grid points on a 20

2
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Mflops supercomputer, this simulation took several hours to compute. Today, the fastest

supercomputers can reach petaflop speeds, which are nine orders of magnitude faster [2].

More recently, the massively parallel architecture of current video cards (GPUs) have added

an additional dimension to the computing resources, changing the landscape of high per-

formance computing altogether [93].

1.1 Challenges in Hypersonic Flow Simulations

At hypervelocities, the assumption of a perfect gas fails due to effects of the high temper-

atures associated with such flow conditions. The excitation of internal energy modes and

the occurrence of chemical reactions require modifications to the standard Navier-Stokes

equations that represent ideal gas flows.

When a high speed fluid is decelerated to near stagnation at the surface of a vehicle,

the kinetic energy associated with such a flow is converted to internal energy, causing a

very large increase in temperature. Stagnation regions in such situations could generate

temperatures as high as 25,000 K (for e.g. Stardust). Due to very high flow speeds and rela-

tively low densities in the freestream, the distances between shock waves and the spacecraft

are generally very small. With the high temperatures near the surface, boundary layers

associated with these flows are also much thicker than those seen at lower temperatures.

These phenomena combine in creating a viscous-shock layer, complicating the physics of

the flow.

The sudden transfer of a large amount of kinetic energy into internal energy results in

the excitation of various internal energy modes of the gas. Chemical reactions amongst

the constituent species can happen if the temperature is high enough to facilitate their

occurrence. Such reactions can change the physical and chemical properties of the gas, and

its response at the surface of the spacecraft.

In the case of monotomic gases, the translational mode of internal energy can get ex-

cited. For diatomic gases, additional rotational and vibrational modes of internal energy

can get activated. With each internal energy mode having a different rate of excitation

and relaxation, the prevalence of multiple temperatures associated with each mode can be

3



www.manaraa.com

observed under such circumstances.

At even higher temperatures, ionization of the gas molecules can result, leading to more

complex flow phenomena. The presence of ionized gases enhances the radiation emitted by

the shock layer, which needs to be taken into account while designing the TPS of hypersonic

vehicles. Also with reacting gases, depending on the catalycity of the wall material, such

reactions could cause ablation of the heat shield surface, injecting different chemical species

into the flow.

It is therefore imperative that the fluid flow model equations take into account all of

these phenomena to yield correct predictions of heat transfer and aerodynamic loads in

hypersonic flows.

1.2 Governing Equations

The model equations derived by Lee [52] in a seminal work almost three decades ago are

inclusive of the phenomena explained in the previous section. These equations have since

been presented by Gnoffo et al. [30], Park [76], Candler [14] and others. The Navier-Stokes

equations have been presented in these references accounting for differences in temperatures

associated with translation-rotational, vibrational and electronic internal energy modes.

All assumed that the translational and rotational modes equilibrate very fast, and were

therefore represented by a single temperature. Gnoffo et al. [30] further simplified the

equations assuming that the vibrational and electronic modes were in equilibrium, resulting

in a two-temperature thermochemical nonequilibrium model.

Also, due to the chemically reacting nature of hypersonic flows, transport properties

associated with the gas must take into account the local chemical composition of the gas

mixture. Gupta et al. [34] reviewed and presented the reaction rate coefficients and transport

properties for a 11-species air model, with curve fits for various parameters in the high-

energy environment. McBride et al. [60, 61] have presented similar curve fits for reacting

gases for various other species, enabling the computation of thermodynamic and transport

properties for any combination of species.

With the availability of the detailed model equations and a comprehensive set of data for
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various gases, the next step would be to investigate the current state-of-the-art in computing

hypersonic flows.

1.3 CFD Tools

Notwithstanding the challenging physics and chemistry modeling in hypersonic flows, the

situation is further intensified by the implications of such extreme conditions on CFD tools.

Extremely high Mach numbers, vacuum like environments with very low densities and tem-

peratures, and borderline continuum-rarefied settings each introduce challenges in program-

ming an effective solver to compute hypersonic flows. These are further complicated with

the presence of chemical reactions, ionization, radiation and ablative phenomena. Ablation

could also introduce turbulence in the surrounding flow which can constitute a separate

field of study altogether. Additionally, the shapes of vehicles that do not conform to simple

geometric patterns add an extra dimension of complexity. Due to these challenges, the

prediction of aerodynamic heating in a hypersonic flow is considered a cornerstone enabling

requirement [108].

In situations where the hypersonic flow environment encounters very low density gases

in vacuum like conditions, DSMC (Direct Simulation Monte Carlo) techniques have been

able to make very good predictions of the flow [13, 64, 96, 65, 71, 12, 54]. Developed by

Bird [8, 9], DSMC techniques consider the individual gas molecules and trace the motion

of each of these molecules using a statistical Monte Carlo simulation. Codes, such as the

DS2V/3V Program Suite [10] and MONACO [21] have been used extensively to simulate

hypersonic rarefied gas flows. Additionally, hybrid DSMC-Navier Stokes simulations have

also been carried out, where regions of high Knudsen number are computed using a DSMC

solver and the rest of the domain is solved using a continuum solver [102, 86, 87, 88, 85].

Extra care is required in considering the overlap region where the gas can be considered

neither continuum nor rarefied. Monte Carlo simulations become prohibitively expensive

when used in regions of low Knudsen numbers.

Several finite volume CFD solvers have been developed to solve chemically reacting

hypersonic continuum flows. With the current study aimed at tackling this problem, these
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are further explained in the following sub-sections.

CFD codes can be broadly categorized into structured and unstructured grid solvers

depending on the topology of the discretization strategy. Each technique has its own set

of advantages and disadvantages. Whereas body-fitted structured grids have been used

for a significantly longer period of time in the field of hypersonics resulting in a extensive

knowledge-base, recent developments in the field of high performance computing have made

unstructured grids a more attractive and viable option. A series of review papers in the

recent past have highlighted and documented the state-of-the-art in hypersonic flow mod-

eling [31, 32, 108, 17, 11, 56]. A few prominent solvers amongst many are detailed in the

following sub-sections.

1.3.1 Hypersonic Structured Grid Solvers: State-of-the-Art

Body-fitted, structured grid solvers have in the past established their capability in predicting

viscous hypersonic flows. These grids are orthogonal to the surface panels, facilitating the

implementation of exact boundary conditions at the wall [41]. NASA codes LAURA [29]

and DPLR [105] have been shown to predict off-surface flow features, as well as surface

phenomena such as hypersonic convective heating to very good levels of accuracy [40].

LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) uses an upwind-

biased, point-implicit or a line-relaxation algorithm for three-dimensional, viscous, com-

pressible flows. It uses a finite-volume formulation that sets up the inviscid fluxes using

Roe’s averaging and Harten’s entropy fix with second-order corrections based on Yee’s sym-

metric total variation-diminishing scheme. The viscous terms are discretized by using a

central difference scheme.

DPLR (Data-Parallel Line Relaxation) uses data-parallel line relaxation methodology

to integrate the equations to steady state. Here, the inviscid fluxes are computed using

a modified (low-dissipation) form of the Steger-Warming flux vector splitting scheme [55],

with a third-order spatial accuracy obtained using MUSCL extrapolation coupled with a

minmod limiter.

Both of these solvers are parallel, multi-block, structured, finite volume codes that
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solve the reacting Navier-Stokes equations including finite-rate chemistry and the effects of

thermal nonequilibrium. DPLR assumes that the species remain in the electronic ground

state, whereas LAURA assumes that the electronic mode to be excited and in equilibrium

with the vibrational mode.

Other structured grid codes, such as GASP [4] and GIANTS [70], have also been used

effectively in computing flow physics in the hypersonic regime.

Unfortunately, the amount of time, effort and expertise required in setting up a test

case for complicated transport geometries can be quite a deterrent with such structured

grid solvers. For example, during the X-33 design phase, it took approximately four weeks

just to construct a high-quality multi-block structured grid for LAURA [31]. Therefore, the

desire for an unstructured grid code [32] capable of computing viscous diffusion phenomena

in the hypersonic environment is the motivation behind this work.

1.3.2 Hypersonic Unstructured Grid Solvers: State-of-the-Art

To avoid the extensive time and expertise required in setting up effective body-fitted grids

around hypersonic transport systems for structured grid solvers, there has recently been a

concerted effort made in moving towards unstructured grid solvers.

Primarily, the relative ease of grid generation and the capability of performing solution

adaption without having to consider the deformation of the grid topology have driven this

effort. Advancements in high speed computing and cheaper memory costs have increased

the attractiveness of unstructured grid solvers, which require the explicit determination and

maintenance of neighbor cell information [92]. Parallelization of these codes has further

reduced the costs of running such test cases, making them ideal for simulations around

complex geometries.

LeMANS (Le Michigan Aerothermodynamic Navier-Stokes code) [83], for example, has

been extensively used in computing and analyzing hypersonic reacting flows. It is a par-

allelized finite-volume solver that is capable of simulating gases in thermal and chemical

nonequililbrium. It uses a modified Steger-Warming FVS scheme, and is 2nd order accu-

rate in space and time. A 2-temperature model is used to account for the nonequilibrium
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between vibrational and translational-rotational modes, and the energy exchange rates are

modeled using the Landau-Teller model. Different boundary conditions, including no-slip

and slip velocity and temperature are enforced.

Of the aforementioned body-fitted grid solvers, attempts have been made to extend the

technology of LAURA and DPLR to the unstructured framework. FUN3D [5] and US3D

[68], respectively, have been efforts along these lines, with the former using a tetrahedral

framework and the latter accommodating tetrahedral, prismatic and hybrid hexahedral-

prismatic-tetrahedral grids.

FUN3D is the product of the integration of the structured grid external flow solver

(LAURA) and an internal flow solver (VULCAN [103]). It is a tetrahedral grid based code

that was developed to implement robust schemes with quantified uncertainties, resulting

in minimum user intervention for hypersonic applications. However, hypersonic stagnation

region heat transfer predictions using FUN3D have been significantly poorer compared to

LAURA [32].

The accuracy of the predictions were found to be very sensitive to the choice of algorithm,

with the high aspect ratio, poorly aligned, tetrahedral cells complicating high Reynolds

number simulations, compared to locally structured meshes aligned to the flow (Fig. 2).

Particularly, the prediction of the post-shock velocities and entropy that are convected

to the edge of the boundary layer significantly affected the quality of the heat transfer

predictions [32].

This was further investigated by Nompelis et al. [67], who studied various configurations

of the unstructured grids to compare hypersonic heat transfer predictions (Fig. 3). Heating

estimates were found to be very sensitive to the grid design due to the extremely large

gradients near the shock.

Here again, the inability of the poorly shock-aligned tetrahedral cells to produce a

smooth shock introduced pronounced errors in the subsonic entropy layer behind the bow

shock. This resulted in a poorly resolved solution affecting the heat transfer rate, compared

to shock-aligned hexahedral cells. Refining the tetrahedral cells around the shock did im-

prove the solution significantly, showing that the quality of the predicted solution depends
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Figure 2: Structured grid (bottom) and equivalent uni-
formly biased unstructured grid (above) in Ref. [32]

(a) Fully hexahedral
mesh

(b) Hexahedral near
shock and wall

(c) Clustered tetrahedral
mesh

(d) Isotropic tetrahedral
mesh

Figure 3: Grid configurations in Ref. [67]

both on the orientation of the cell boundaries to flow features, as well as the size of each

control volume.

US3D uses the same data-parallel line relaxation integration scheme that DPLR does,
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but has an option of using this in the boundary layer region alone. Elsewhere, it uses a

point-implicit scheme. Using tetrahedral elements for an inviscid analysis, Candler et al.

again confirmed the observations made by Gnoffo and White [32], elucidating the sensitivity

of the shock solution to the grid alignment [15]. Based on the results of simulations with

various configurations (Fig. 4), it was shown that the lack of alignment of tetrahedral cells

to the shock resulted in the injection of spurious momentum into the flow field, poorly

predicting the post-shock velocities.

Figure 4: Computational grids used in Ref. [15]

Further, when hexahedral cells were used at the shock, such non-physical velocity and

entropy predictions were controlled, significantly improving the flow physics estimations.

As the cylinder analysis was conducted for an inviscid flow, the effect of the surface cells on

heat transfer were not investigated for this setup. Results of the convective heat transfer

rate over a sphere did show discrepancies between triangular and quadrilateral surface cells

(triangular cells over-predicted the stagnation point heat transfer rate by ≈ 15%), but the

inference was inconclusive because the reason behind the difference was unknown.

In computing the flux terms, the Cartesian grid framework is advantageous relative to
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other unstructured grid topologies, like tetrahedral or prismatic grids, as it is associated

with perfectly orthogonal grid cells. Complex coordinate transformations and calculations

of contra-variant velocities can be avoided, thus reducing the truncation error. Also, such a

framework eliminates the need for body-fitted cells, allowing for automatic grid generation

around even very complex geometries.

Several studies have been carried out to compute viscous flows using unstructured Carte-

sian grids. Marshall [57] showed that such a framework could indeed be used to predict

viscous fluid physics for subsonic, transonic and supersonic test cases. Laminar flows alone

were considered in that study, and very good predictions of the surface pressure and skin

friction coefficients were made and compared with experiments. Lee [50] extended this capa-

bility to the turbulent regime using the κ-ε model, with particular application to rotorcrafts.

Here too, comparisons with experiments showed excellent agreement of the surface pressure

and skin friction coefficients. Both of these studies were carried out in the NASCART-GT

flow solver, using Roe’s Approximate Riemann Solver.

Chemically reacting inviscid fluids in thermal nonequilibrium have also been computed

using the Cartesian grid framework. Tu [97] implemented a two-dimensional, two-temperature

thermochemical nonequilibrium Euler solver, and showed very good off-surface flow physics

prediction capability using unstructured Cartesian grids. That code used the HLLC Ap-

proximate Riemann Solver for inviscid flux vectors. Lee [51] further extended the frozen flow

capability of NASCART-GT to compute inviscid flows in thermochemical nonequilibrium

using the AUSMPW+ scheme. A point-implicit solver was implemented to compute the

chemical source terms, and the off-surface physics compared very well with those computed

using DPLR.

Hypersonic convective heat transfer predictions continue to remain a challenge, requir-

ing accurate estimations of the surface temperature gradients. Hamilton et al. [35, 36]

have used approximate methods to predict convective heat transfer rates based on the

chemically reacting inviscid solution using unstructured Cartesian grids. Studies with both

laminar and turbulent flows were conducted and rapid approximate predictions were made

for preliminary TPS design concepts. Good comparisons with LAURA show potential for
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implementing such a methodology during the intial stages of the design process.

Being a subset of the hexahedral mesh topography, Cartesian cells can be better aligned

to the shock in front of a bluff body, when compared to tetrahedral cells. The normal shock

portion generally orients itself along the Cartesian directions, resulting in good predictions

of the flow physics even for hypersonic Mach numbers. Tu [97] and Lee [51] have shown

this for inviscid flows, and Sekhar et al. [90] presented preliminary comparisons for viscous

hypersonic flows using the unstructured Cartesian grid framework.

For the portion of the shock away from the stagnation region, the Cartesian cell topology

lends itself to be misaligned to the shock-shape. Such misalignment can also be observed for

sharp bodies, such as wedges, where oblique shocks are often encountered. Nompelis et al.

[67] showed that the accuracy of the post-shock velocities and entropy can be significantly

improved by refining shock-misaligned cells for a tetrahedral mesh. Given the solution

adaption capability of Cartesian solvers such as NASCART-GT, shock regions are typically

well refined using very fine Cartesian cells. This efficient refinement of shock regions has

been shown to provide very good predictions of shock shape and overall post-shock flow

physics [57, 51].

Also, the surface pressure variation and the skin friction coefficient predictions using

Cartesian cells for different Mach regimes (subsonic, transonic and supersonic) have been

established [57, 50]. The estimation of these parameters in the hypersonic regime, combined

with the lack of conclusive investigation into the heat transfer prediction capability using

non-surface-aligned cells (specifically Cartesian cells) are the motivation behind this research

effort.

1.4 Scope of Present Work

The inherent advantages of the unstructured Cartesian grid framework make it an attractive

alternative to body-fitted structured meshes, and even other unstructured grid topologies.

Recent research of this technology have shown significant advances in computing flows

under various conditions, with applications ranging from LES of turbulence to moving

body analyses. However, there is a dearth of comprehensive research studies on utilizing
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this technique in computing viscous, hypersonic flows. The present work seeks to fill that

gap. Specifically, the combination of this framework with the immersed boundary method

is used as the basis for this research effort. Additionally, viscous, hypersonic flows in

thermochemical nonequilibrium are simulated to advance the state-of-the-art in this field.

This is a first such effort, and will lay the foundation for further essential studies in this

area. The overall outline of the research effort is given below.

As a preliminary exercise, the capacity of the immersed boundary ghost cell approach

in NASCART-GT to predict the surface physics in a hypersonic non-reacting environment

is investigated. High velocity argon gas flows past a 2-D cylinder are simulated for a set of

freestream conditions (Reynolds numbers), and the impact of grid cell sizes on the quality

of solution is evaluated. Additionally, the solver’s prediction ability is verified over a series

of hypersonic Mach numbers for flows past a hemisphere, and compared to experimental

data and empirical estimates.

A test case that involves complex hypersonic flow physics is chosen, and the advantages

of using an unstructured Cartesian mesh are demonstrated next by using the adaptive

mesh refinement strategy installed in the solver. This setup involves flow separation and

the interaction between a hypersonic shock wave and a boundary layer, and is studied using

this unstructured Cartesian grid framework. The immersed boundary ghost cell approach

is tested with two temperature clipping strategies, and their impact on the overall solution

accuracy and smoothness of the surface property predictions are compared.

Finally, having incorporated the species diffusion terms in the conservation equations,

and collision cross-section based transport coefficients, reacting flow environments are next

studied, and comparisons of the off-surface flow physics and the surface physics predictions

are made. First, a 2-D cylinder in a hypersonic reacting air flow is tested with an adiabatic

wall boundary condition. Next, the same 2-D cylinder geometry is tested to evaluate the

isothermal wall boundary condition, and to identify the strengths and weaknesses of the

immersed boundary ghost cell methodology in computing convective heating rates in a

hypersonic environment.

This dissertation is organized as follows. Chapter 2 details the governing equations, and
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the physics and chemistry models that set the stage for the analysis of hypersonic flows. In

Chapter 3, the numerical tools incorporated in NASCART-GT that are used to compute

these flows are explained. This includes the time integrations schemes as well as the im-

mersed boundary ghost cell approach. Chapters 4, 5 and 6 present the results of hypersonic

flow studies, with comparisons with experiments and other CFD results included. Conclu-

sions are drawn and recommendations for further research in this area are summarized in

Chapter 7.
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CHAPTER II

MATHEMATICAL FORMULATION

At hypersonic speeds, accurate aerothermodynamic predictions of the near-field and far-

field flow features require detailed definitions of the fluid property gradients, transport

mechanisms of various attributes of the fluid, chemical compositions and reaction rates, and

the state of the gas throughout the computational domain. The governing equations that

are used to compute fluid flows at subsonic or supersonic speeds fail to model the complex

phenomena that are encountered when internal energy modes of the gas are excited. The

perfect gas assumptions made in the basic Navier-Stokes equations should therefore be

extended to account for these modes, as well as to compute the chemical reactions that are

seen at such extreme conditions. In this chapter, model equations that are used to describe

such physical processes and chemical reactions are detailed.

2.1 Conservation Equations

Conservation equations for the simulation of fluid flows in thermochemical nonequilibrium

are presented in this section. It is primarily assumed that the fluid under consideration

satisfies the continuum hypothesis, i.e. the Knudsen number (defined as the ratio of the

mean free path of the gas to the characteristic length scale of the flow) associated with

the fluid flow is small enough that the continuum formulation (Navier-Stokes) of the fluid

dynamics can be used, instead of the molecular dynamics formulation (Boltzmann).

It is important to emphasize this assumption given that much of the flow regimes that

are encountered in hypersonic flight range between continuum and free-molecular. Ad-

ditionally, the low densities in such environments lend to added complexities in the flow

physics and chemistry. The combination of low densities and the high velocities that dom-

inate these situations creates an environment where the time taken by the bulk fluid flow

to adjust to the body under consideration and the relaxation time for the internal energy

modes to equilibrate are comparable. Generally, at lower speeds and sea-level densities, the
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bulk fluid motion accommodates to the body at a much slower rate than the equilibration

process of the internal energy modes (aided by increased number of molecular collisions at

higher densities). Therefore, simpler perfect gas assumptions can be used to compute such

flow conditions. With these assumptions failing for hypersonic flow regimes, it is critical

to account for such nonequilibrium phenomena while setting up the model equations to

compute these flows as they affect various aspects of the flow environment, such as shock

stand-off distances, surface pressure distributions, peak temperatures in the flow, etc.

Much of the equation sets presented below were derived from the works of Lee [52],

Gnoffo et al. [30], Park [76] and Candler [14]. This formulation accounts for the fact that

the translational and rotational modes of internal energy equilibrate very fast (within a

few molecular collisions), and can thus be represented by a single temperature. Further,

considering that the process of exchange of energy between these and the vibrational mode

is much slower, a separate temperature is used to define the vibrational internal energy.

Thus, nonequilibrium in this formulation is manifested in the form of a two-temperature

model. The conservation equations in tensor form can be written as:
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These model conservation equations include the total density equation (Eq. 1), 3 mo-

mentum equations (Eq. 2), the total energy equation (Eq. 3), individual species density

equations (Eq. 4) and the vibrational energy equation (Eq. 5). Here, ρ and ρs are the total

and individual species densities of the gas, respectively, ui is the bulk velocity along the

ith direction, e and ev are the total and the vibrational energies per unit mass of the gas,

respectively, p is the static pressure associated with the gas, Ttr and Tv are the translational-

rotational and vibrational temperatures of the gas, respectively.

It should be noted that ionization is taken to be absent in this formulation even though

it is based on a single temperature representing the vibrational and electronic internal

energy modes. Also, the vibrational energies of different molecules are all assumed to be

in equilibrium with each other, thereby requiring a single vibrational temperature to model

this internal energy mode. These simplifications may not be adequate for problems that

involve much higher temperatures and radiation, but provide reasonable results for most

reentry configurations [30]. Furthermore, the accuracy of multi-vibrational temperature

models are limited by the quality of the available data that describes the energy exchange

between individual species vibrational energy modes.

The terms in each of these equations are arranged such that the time rate of change of

the conserved variables and the advective processes that transport the conserved variables

lie on the left hand side, whereas the dissipative processes and the source terms lie to the

right of the equality sign. These are explained below and in the subsequent sections of this

chapter.

The mixture density is the sum of the individual species densities in the gas, and the

total pressure is defined based on Dalton’s law of partial pressures:

ρ =
∑

ρs (6)

p =
∑

ps =
∑

ρsR̄Ttr/Ms (7)

Here, R̄ is the universal gas constant and Ms is the molecular weight of species s. The
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total energy is defined as the sum of internal energy modes of the gas, plus the heat of

formation of each species and the kinetic energy of the bulk gas:

e =
∑

CV,sTtr +
∑

ev,s (Tv) +
∑

h◦s +
uiui

2
(8)

where, CV,s is the specific heat capacity of species s at constant volume. This includes

the translational and rotational components of the specific heat capacity. The vibrational

energy in this two-temperature gas model is evaluated by subtracting the calorically linear

translational-rotational mode of internal energy, the heats of formation and the bulk kinetic

energy from the total energy at the vibrational temperature:

ev (Tv) = e (Tv)−
∑

CV,sTv −
∑

h◦s −
uiui

2
(9)

With that explanation of the parameters that constitute the advective terms in the

conservation equations, the viscous diffusion terms are explained in the next section.

2.2 Transport Properties

The viscous diffusion terms in the governing equations describe the transport of momentum,

energy and species concentrations across the control volume. In this study, the fluid is

assumed to be Newtonian for the viscous stresses, and Fourier’s law and Fick’s law are used

to determine the heat transfer rates and the species diffusion rates, respectively.

The computation of the transport coefficients, i.e. the viscosity (µ), thermal conductiv-

ities (Ktr, Kv), and the species diffusion coefficients (Ds), are explained here. For a perfect

gas, Sutherland’s formulation (Eq. 10) is generally used to determine molecular viscosity.

This model is valid for temperatures below 1,000 K. Additionally, thermal conductivity is

computed from the relation between the Prandtl number and molecular viscosity (Eq. 11).

Of course, species diffusion is absent for a perfect gas.

µ = C1
T 3/2

T + C2
(10)

κ =
µCp

Pr
(11)
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In Eq. 10, µ is the viscosity of the gas, T is the temperature at which the viscosity is

being computed and C1 and C2 are the Sutherland’s coefficients for that gas. In Eq. 11, Cp

is the specific heat constant at constant pressure for that gas and Pr is the Prandtl number.

Also, the bulk viscosity (λ) is determined using Stokes’ hypothesis, i.e.:

λ = −
2

3
µ (12)

For a gas in thermal nonequilibrium, the computation of the transport properties must

take into account the differences in the temperatures associated with the internal energy

modes [52]. There can be significant differences in the values of the diffusion coefficient,

viscosity and the thermal conductivity, depending on the extent of the nonequilibrium

phenomenon. Furthermore, individual contributions from the reacting constituents of the

gas in chemical nonequilibrium must also be considered.

For temperatures above 1,000 K, where the Sutherland’s model for transport properties

fails, empirical relations based on the collision cross-sections can be used instead. The

formulations of Lee [52], Gnoffo et al. [30] and Gupta et al. [34] are given below. These

use a simplification of the first-order Chapman-Enskog approximation of the mixing rule

[34], which is adequate for weakly ionized gases. The mixing rule is extended to a gas in

thermal nonequilibrium by evaluating collision integrals at the controlling temperatures.

The integrals for heavy particles are based on the translational-rotational temperature.

These are evaluated as curve fits to tabulated data [34, 61].

πΩ̄(1,1)
si =

[

exp
(

D
Ω̄(1,1)

si

)]

T

[

A
Ω̄
(1,1)
si

(lnT )2+B
Ω̄
(1,1)
si

lnT+C
Ω̄
(1,1)
si

]

πΩ̄(2,2)
si =

[

exp
(

D
Ω̄(2,2)

si

)]

T

[

A
Ω̄
(2,2)
si

(lnT )2+B
Ω̄
(2,2)
si

lnT+C
Ω̄
(2,2)
si

]

(13)

The integrals in Eq. 13 are modified and used in the determination of transport prop-

erties. The modified integrals take the form (Eq. 14):
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∆(1)
si (T ) =

8

3

[

2MsMi

πR̄T (Ms +Mi)

]1/2

πΩ̄(1,1)
si

∆(2)
si (T ) =

16

5

[

2MsMi

πR̄T (Ms +Mi)

]1/2

πΩ̄(2,2)
si (14)

To take into account the composition of the gas whose transport coefficients are the be

determined, the molar concentration of the species s in the mixture is defined as:

cs =
ρs
ρMs

(15)

Thus, based on the collision integrals and the species concentrations, the viscosity of

the gas mixture is computed using the following expression:

µ =
∑ mscs

∑Ns
i=1 ci∆

(2)
si (T )

(16)

Here, ms is the mass of a single particle of species s.

The expression for the thermal conductivity associated with the translation mode of

internal energy is given in Eq. 17. k in the formula is the Boltzmann’s constant.

Kt =
15

4
k
∑ cs

∑Ns
i=1 asici∆

(2)
si (T )

(17)

Here, the nondimensional parameter asi is defined as:

asi = 1 +
[1− (ms/mi)] [0.45− 2.54 (ms/mi)]

[1 + (ms/mi)]
2 (18)

To compute the thermal conductivity of the gas mixture associated with the rotational

mode of internal energy, the molecules are assumed to be fully excited and the formulation

is given by:

Kr = k
∑

molec

cs
∑Ns

i=1 ci∆
(1)
si (T )

(19)

The conductivity of the mixture for the combination of translational and rotational

modes is thus taken as the sum of the individual components. The vibrational component

of thermal conductivity is assumed to be equal to the rotational component.
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Ktr = Kt +Kr (20)

Kv = Kr (21)

To account for the species diffusion phenomena occurring due to the gradients in species

concentrations across the flow, consider the binary diffusion coefficient for a pair of particles.

This is defined as:

Dsi =
kT

p∆(1)
si (T )

(22)

The effective diffusion coefficient of species s in the entire gas is given by:

Ds =
c2tMs (1−Mscs)
∑Ns

i=1
i $=s

(ci/Dsi)
(23)

Here, ct is the sum of the molar concentrations of all the species in the entire gas mixture:

ct =
∑

cs (24)

Also, the species mole-fractions are defined as:

χs =
(ρs/Ms)

∑Ns
i=1 (ρi/Mi)

(25)

2.3 Chemistry Model

Next, the chemistry model used to compute the chemical source term is explained here. A

standard finite-rate chemistry model is assumed for the reacting gas. The equation for a

single generic chemical reaction can be represented as [100]:

Ns
∑

i=1

ν ′iXi
kf−⇀↽−
kb

Ns
∑

i=1

ν ′′i Xi (26)

Here, Xi represents the participating species in the reaction, and ν ′i and ν ′′i are the stoichio-

metric coefficients corresponding to each species, on the reactants side and the products

side, respectively.
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During chemical nonequilibrium, the difference between the rates of production and

destruction of a species constitutes the chemistry source term. For each species, during

each reaction, this can be represented as:

dXi

dt
=
(

ν ′i − ν ′′i
)

{

kf
∏

Ns

[Xi]
ν′i − kb

∏

Ns

[Xi]
ν′′i

}

(27)

Summing this term over all the reactions, and multiplying by the molecular weight of

each species yields:

ω̇s = Ms

Nr
∑

i=1

dXi

dt
(28)

The forward and backward reaction rate constants are very sensitive to temperature, and

therefore, in thermochemical nonequilibrium flow simulations, significant differences in the

reaction rate constants can be seen depending on the temperatures used in the calculations.

The forward reaction rate constant is computed in the Arrhenius form as follows:

kf (Tq) = CfT
η
q exp (−Ef/kTq) (29)

Tq in the above equation represents the temperature at which the forward reaction rate

constant is determined. Depending on the chemical model, this parameter can take different

forms, resulting in more reactive or less reactive gases. Park [74] suggested the use of a

temperature that represents both translational-rotational as well as the vibrational modes

of internal energies. This model assumes that the reaction rate constants are governed by

the geometric average of these temperatures:

Tq =
√

TtrTv (30)

Lee [51] implemented this, as well as models recommended by Dunn and Kang [22],

Gupta [34], and Park [72, 75, 77, 74, 78] for the forward reaction rate constants. The

backward reaction rate constant is computed from the equilibrium constant:

kb (Tq) =
kf (Tq)

Keq (Tq)
(31)
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The equilibrium constant, in turn, is determined in the form of curve fits from Gibb’s free

energy (Eq. 35) [34]. It should be noted here that the backward reaction rate is generally

not governed by the same temperature as the forward reaction rate, but is instead controlled

by the translational-rotational temperature. The relation between the equilibrium constant

based on the partial pressures and the Gibb’s free energy is as follows [46]:

Kp (T ) = exp
(

−∆gp1atm/R̄T
)

(32)

where,

∆gp1atm =
∑

i

(

ν ′i − ν ′′i
)

gp1atm (T ) (33)

From which the equilibrium constant based on the concentrations can be computed as:

Keq (T ) = Kp (T ) /
(

R̄T/p1atm
)

∑

i(ν′i−ν′′i ) (34)

The Gibb’s free energy per unit mole can be computed at a specific temperature using an

empirical curve fit [34]:

gp1atm (T ) = R̄T{A1 [1− lnT ]−
A2T

2
−

A3T 2

6
−

A4T 3

12
−

A5T 4

20
−

A6

T
−A7} (35)

2.4 Relaxation Model

In the vibrational energy conservation equation, the source term accounts for two phenom-

ena: the first is the energy exchange between the vibrational and the translational-rotational

modes due to collisions, and the second is the vibrational energy change due to dissocia-

tion/recombination reactions.

As there are no definitive models to describe the latter phenomenon, the second term is

determined based on the non-preferential model [30, 83], where the molecules are created

or destroyed at the average vibration energy level.

∑

ω̇sêv,s =
∑

ω̇sev,s (36)

The energy exchange between the vibration and translation-rotation mode is modeled

based on the Landau-Teller model, where the relaxation time in the first term is computed
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using the molar-averaged correlation by Millikan and White. It is expressed as [30, 51]:

〈τs〉 =
∑Ns

i=1 χi
∑Ns

i=1 χi/τsi
(37)

where χi is the species mole-fraction. The inter-species relaxation time, τsi, is modeled as:

τsi =
exp

[

Asi

(

T−1/3 − 0.015µ1/4
si

)

− 18.42
]

p/101325
(38)

In this model,

Asi = 1.16× 10−3µ1/2
si θ4/3v,s

µsi =
MsMi

Ms +Mi
(39)

For temperatures above 8,000 K, Park’s high temperature correction is adopted as [73,

51]:

τParks =
1

(σsc̄′sns)
(40)

Here, ns is the number density of species s, c̄′s is the average molecular velocity of that

species and σs is the effective cross-section for collisions. The latter two properties are

computed as:

c̄′s =

(

8kT

πMs

)1/2

σs = 1021
(

50000/T 2
)

(41)

The total relaxation time is the sum total of the molar-averaged relaxation time and Park’s

correction. At high temperatures, vibrational relaxation obeys a diffusion-like model with

respect to vibrational energy levels [30]. Lee implemented Park’s appropriate modification

which takes the form [51]:

1

〈τ cv 〉
=

1

〈τv〉

∣

∣

∣

∣

Tsh − Tv

Tsh − Tv,sh

∣

∣

∣

∣

s′−1

(42)

where,

s′ = 3.5 exp (−5000/Tsh) (43)
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In this correction, Tsh and Tv,sh are the translational-rotational and vibrational tempera-

tures at the point on the shock where relaxation is initiated.
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CHAPTER III

NUMERICAL FORMULATION

The numerical methodology used to compute the model equations that represent the physics

and chemistry of hypersonic flows are presented here. The explanations are within the

context of the unstructured Cartesian grid solver, NASCART-GT.

3.1 Vector Formulation

The conservation equations presented in the previous chapter are rearranged in the vector

form to distinguish the inviscid and viscous terms, as well as the source terms. Identifying

these is crucial since each term is treated differently (the spatial and temporal integration

of inviscid, viscous and source terms) in the flow solver. The resulting set of equations can

be represented as [51, 84]:

∂U

∂t
+

∂ (F− Fv)

∂x
+

∂ (G−Gv)

∂y
+

∂ (H−Hv)

∂z
= S (44)

Here, U is the vector of conserved state variables, F, G and H are the inviscid flux vectors

along the Cartesian X-, Y- and Z- directions respectively, Fv, Gv and Hv are their viscous

counterparts, and S is the vector of source terms due to chemical reactions and thermal

relaxation. Each of these vectors can be expanded as:

U =

[

ρ ρu ρv ρw ρe ρ1 . . . ρNs ρev

]T

(45)

S =

[

0 0 0 0 0 ω̇s . . . ω̇Ns ω̇v

]T

(46)

where the superscript T refers to the transpose of each matrix. The flux vectors can be

expressed as (terms along the X- direction alone are presented in this section; a complete

listing along all three Cartesian axes is given in the appendix A):
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τxxu+ τxyv + τxzw − (qTR,x + qV,x)−
∑

ρshsuD,s

ρ1uD,1
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ρNsuD,Ns
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∑

ρsevuD,s
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
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3.2 Numerical Scheme

Adequate representation of the physical and chemical process using appropriate models

alone is not sufficient in developing an effective numerical solver to compute hypersonic

flows. Appropriate techniques to counter the numerical stiffness and other associated prob-

lems with computing such complex phenomena have to be taken into consideration.

The following sections in this chapter explain the numerical techniques implemented in

NASCART-GT for the time integration of the conservation equations to compute hypersonic

flows with a multitude of physical/chemical phenomena.

3.2.1 Spatial Discretization: AUSMPW+ Scheme

In a control volume, shock waves and boundary layers are generally regions where gradients

of the flow properties are high. At hypersonic Mach numbers, the magnitudes of these

gradients become even more protracted due to the strengths of the shock waves and the

severity of the viscous dissipation in the boundary layers. Solving the conservation equations

in such regions can lead to numerically stiff problems resulting in non-physical flow property

calculations and instabilities. For accurate calculations in stiff regions, numerical dissipation

has to be reduced, which in turn can lead to numerical instabilities adversely affecting

the efficiency of the solver. Non-physical oscillations therefore adversely affect the overall

robustness of the solver. Additionally, the presence of the chemical source term can further
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affect the stiffness of the computation. Therefore, a spatial discretization methodology

that can ensure high levels of accuracy, robustness and efficiency is essential for computing

hypersonic flows.

The significant feature of upwind-biased numerical schemes is that the discretization of

the equations on a grid conforms to the direction of propagation of information on that grid

[94]. Thereby, critical aspects of the physical phenomena are automatically incorporated

into the discretization scheme. There are essentially two methods of identifying the upwind

directions, namely the flux vector splitting (FVS) approach and the flux difference splitting

(FDS) approach. FVS formulations are generally more suited to be used in implicit schemes

where the steady state of the flow is the desired outcome of the simulation. However, the

simplicity of FVS schemes results in poorer resolution of discontinuities when compared to

FDS schemes. The rationale behind FDS formulations is to take advantage of the solution

of the local Riemann problem, which results in more accurate solutions. Such a scheme is

better suited for explicit upwind formulations.

Roe’s Riemann solver [81] is the most popular amongst FDS schemes due to its efficiency

and accuracy. However, around expansion fans, numerical instabilities significantly affect

the quality of the solutions, more so for hypersonic test cases because of the extremely

high velocities associated with such flows. Additionally, this scheme has been known to

show evidences of the carbuncle phenomenon. Liou and Steffen [53] introduced the AUSM

(Advection Upwind Splitting Method) scheme as a robust alternative to the Roe’s solver,

with appropriately defined cell-face advection Mach numbers to determine the upwind ex-

trapolation for convective quantities. With this, the AUSM scheme resolved shear layers

much better than Roe’s scheme, and was more suited to be used in computing hypersonic

flows. Kim et al. [48] improved this scheme by introducing pressure weighted functions

to avoid numerical oscillations near the wall and prediction overshoots behind shockwaves.

This was further enhanced by Kim et al. [47] to be applied to hypersonic flows. With a

new definition of the numerical speed of sound at cell interfaces, oblique shocks were better

defined, avoiding non-physical expansion fans in the computations.

Lee [51] implemented the AUSMPW+ spatial discretization scheme in NASCART-GT
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for the calculation of the inviscid fluxes, while extending the solver to compute inviscid

flows in thermochemical nonequilibrium. Details of the implementation are given below.

For the sake of simplicity, the flux computation along the X- direction alone is presented

here.

While computing the flux terms in Eq. (44) using AUSMPW+, the inviscid flux terms

at the cell interface take the following form [47]:

F 1
2
= M̄+

L c 1
2
ΦL + M̄−

R c 1
2
ΦR +

(

P+
L |α [PL] + P−

R |α [PL]
)

(47)

where, for m1/2 ≥ 0

M̄+
L = M+

L +M−
R [(1− ωp) (1 + fR)− fL]

M̄−
R =M−

Rωp (1 + fR) (48)

and for m1/2 ≤ 0

M̄+
L =M+

L ωp (1 + fL)

M̄−
R = M−

R +M+
L [(1− ωp) (1 + fL)− fR] (49)

Here, m1/2 is the Mach number at the cell interface given by:

m1/2 = M+
L +M−

R (50)

Also,

ωp (pL, pR) = 1−min

(

pL
pR

,
pR
pL

)3

(51)

and

fL,R =











(

pL,R

ps
− 1
)

min

[

1,
min(p1,L,p1,R,p2,L,p2,R)

min(pL,pR)

]2

, ps (= 0

0, ps = 0

(52)

In the above expression, ps is defined as follows:

ps = P+
L pL + P−

R pR (53)

Also,

Φ = [ρ, ρu, ρv, ρw, ρh, ρ1, . . . , ρNs , ρeV ]
T

P = [0, p, 0, 0, 0, 0, . . . , 0, 0]T (54)
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Function ωp varies as the cube of the pressure ratio and is small in most regions of the

computational domain except around high pressure gradient regions like shocks. The Mach

number and the pressure splitting function in the AUSMPW+ scheme at the cell interface

are given by:

M± =











±1
4 (M ± 1)2 , |M | ≤ 1

1
2 (M ± |M |) , |M | > 1

(55)

and

P±|α =











±1
4 (M ± 1)2 (2∓M)± αM

(

M2 − 1
)2

, |M | ≤ 1

1
2 (1± sign (M)) , |M | > 1

(56)

with α ranging from 0 to 3/16. At 0, the scheme is more robust with the pressure splitting

function being more diffusive, and at 3/16 the scheme becomes more accurate. The Mach

number on each side is defined as:

ML,R =
UL,R

c 1
2

(57)

The critical speed of sound at the cell interface is given below:

c 1
2
=











c′2s /max (|uL| , c′s) , 1
2 (uL + uR) > 0

c′2s /max (|uR| , c′s) , 1
2 (uL + uR) < 0

(58)

Here,

c′s =

(

2hnormal
(γ̃L − 1) / (γ̃LuR)− (γ̃R − 1) / (γ̃RuL)

(γ̃R + 1) / (γ̃RuR)− (γ̃L + 1) / (γ̃LuL)

)0.5

(59)

In the above expression, for chemically reacting flows in thermal nonequilibrium:

γ̃ = 1 +
p

ρe
(60)

and the average sensible total enthalpy, hnormal is given by:

hnormal =

(

hsensible,L + 1
2u

2
L + hsensible,R + 1

2u
2
R

)

2
(61)

3.2.2 MUSCL Extrapolation

For upwind schemes, the first spatial derivative of a property can be approximated to a first

order discretization using a 2-point stencil; a 3-point stencil is required for second order

accuracy. In FDS schemes, higher order approximations are determined based on the flux
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values at the cell faces. In the original FDS schemes, the state vectors were assumed to be

a constant throughout the grid cells. This assumption was sufficient for first order accurate

discretizations [92]. Van Leer extended this by assuming that the state variables have a

gradient from the cell center to the faces of each cell [99]. This strategy led to higher order

extrapolations of the fluxes and state variables to the cell boundaries.

Such an implementation for data reconstruction at the cell faces (MUSCL: Monotone

Upstream-centered Schemes for Conservation Laws) is combined with the AUSMPW+

scheme in NASCART-GT for higher order inviscid fluxes. The expressions for extrapo-

lating the cell centered values to the cell faces are given below:

WL
i+1/2,j,k = Wi,j,k +

εi,j,k∆xi,j,k
2

[

(1− κ)
Wi,j,k −Wi−1,j,k

∆xi,j,k +∆xi−1,j,k
+ (1 + κ)

Wi+1,j,k −Wi,j,k

∆xi+1,j,k +∆xi,j,k

]

WR
i+1/2,j,k = Wi+1,j,k −

εi,j,k∆xi+1,j,k

2

[

(1 + κ)
Wi+1,j,k −Wi,j,k

∆xi+1,j,k +∆xi,j,k
+ (1− κ)

Wi+2,j,k −Wi+1,j,k

∆xi+2,j,k +∆xi+1,j,k

]

(62)

where,

W = [ρ, u, v, w, h, c1, . . . , cNs , eV ]
T (63)

Depending the values of εi,j,k and κ, different spatial orders of accuracies can be achieved

at the cell faces. The combinations are presented in Table 1.

Table 1: Coefficients for MUSCL extrapolation

εi,j,k κ Order of accuracy

0 - First-order piecewise constant

1 -1 Second-order fully upwind biased

1 0 Second-order upwind biased

1 1 Second-order central-differenced

1 1/3 Third-order upwind biased

It should be noted here that at the cell faces, viscous fluxes are calculated using a

standard second order central difference scheme [50].
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3.2.3 Flux Limiter

To ensure the stability during the progress of the simulations and to avoid non-physical

overshoots, monotonicity of the scheme is maintained by using a limiter in the MUSCL

extrapolation that becomes effective in regions of large gradients in density, total internal

energy, total enthalpy, species concentrations and the energy associated with the vibrational

mode [50]. This limiter reduces the order of accuracy of the MUSCL extrapolation when

the magnitude of the difference in the flux terms from the cell center to the cell face is found

to be greater than a threshold (φlim). For example, at the i + 1/2 face, the formulation

looks like:

εi+1/2,j,k = min

[

εi,j,k,max

(

1−
∆φmax

φlim
, 0

)]

(64)

where,

∆φmax = max
[{

max
(

φLi+1/2,j,k
,φRi+1/2,j,k

)

−max (φi,j,k,φi+1,j,k)
}

,

{

min
(

φLi+1/2,j,k
,φRi+1/2,j,k

)

−min (φi,j,k,φi+1,j,k)
}

, 0
]

(65)

and

φlim = osslimit×min (φi,j,k,φi+1,j,k) (66)

“osslimit” controls the level of dissipation of the limiter. The smaller its value, the more

dissipative the limiter is. In other words, it limits the magnitude of any new maxima or

minima created by the MUSCL extrapolation to the left or the right face. Here, φ represents

ρ, e, ho, χs and ev.

This combination of the AUSMPW+ scheme for spatial discretization in tandem with

MUSCL extrapolation, as well as the flux limiter installed in NASCART-GT, have been

shown to make very good predictions of the inviscid hypersonic flows when compared with

both experiments as well as other body-fitted mesh flow solvers [51]. Therefore, it has

been naturally extended to compute viscous flows in thermochemical nonequilibrium by the

addition of diffusion terms and transport coefficients based on the chemistry of the gas.
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3.2.4 Temporal Discretization

3.2.4.1 Explicit 2-stage Hancock Scheme

To provide reasonably efficient and time-accurate solutions of the governing equations,

NASCART-GT employs Hancock’s two-stage (dual time-stepping) explicit scheme that has

been tested and validated for various flow conditions [50, 51]. This explicit scheme comprises

of predictor-corrector stages during time integration shown here:

Stage 1, Predictor: Un+1/2
i,j,k = Un

i,j,k −
1

2

∆tni,j,k
Vi,j,k

Rn
i,j,k (67)

Stage 2, Corrector: Un+1
i,j,k = Un

i,j,k −
∆tni,j,k
Vi,j,k

Rn+1/2
i,j,k (68)

where,

Rn
i,j,k = {Fn

i−1/2,j,k−Fn
i+1/2,j,k}+{Gn

i−1/2,j,k−Gn
i+1/2,j,k}+{Hn

i−1/2,j,k−Hn
i+1/2,j,k}−Sn

i,j,k

(69)

This explicit solver has been used in a multitude of test cases that include sub- and su-

personic viscous flows, as well as inviscid hypersonic thermochemical nonequilibrium flows.

In all these cases, to adequately capture the gradients in the flow field, the minimum cell

sizes in the computational domain were not required to be very small, which in turn allowed

for much larger time steps during time integration (based on the stability criterion for ex-

plicit schemes). Therefore, the associated costs in their computation were within reasonable

limits.

For hypersonic viscous flows, on the other hand, realistic freestream Reynolds numbers

result in very thin boundary layers, requiring extremely small cells to capture the gradients

here. With such cell sizes, the stability criterion for explicit schemes (controlled by the

CFL number) results in prohibitively small time steps. This was indeed the case during

the preliminary investigation where the ∆t values were of the order of 10−12 seconds. To

reach even a microsecond (10−6 seconds) in physical time, such simulations would be re-

quired to run for at least 106 iterations! Clearly, the costs associated with such simulations
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are extremely high and impractical. Therefore, alternative time integration schemes were

considered for the test cases in this research study.

3.2.4.2 Implicit LU-SSOR Scheme

As an alternative to explicit schemes which require intractable number of iterations to com-

pute viscous thermochemical nonequilibrium flows, implicit schemes can be used instead.

In contrast to explicit formulations, the overall stability of the computations with implicit

schemes can be maintained over a large range of ∆t values, resulting in much less simulation

time and cost [45].

A number of body-fitted mesh solvers have been using various implementations of im-

plicit schemes to successfully compute viscous flows in thermochemical nonequilibrium

[16, 105, 29]. Therefore, the natural step towards implementing that capability in an un-

structured Cartesian grid framework would be to consider implicit schemes. Yoon and

Jameson [109] developed an implicit formulation in the form of an efficient multigrid re-

laxation scheme for Newton iteration. The LU-SSOR (Lower Upper Successive Symmet-

ric Over-Relaxation) scheme that they developed requires only scalar diagonal inversions,

whereas Gauss-Seidel and other LU implicit schemes require block matrix inversions. This

results in order-of-magnitude speedups, especially when considering hypersonic flows with

finite-rate chemistry.

Klein [49] incorporated this scheme in NASCART-GT, and made preliminary compar-

isons of the relative speedups for frozen inviscid and viscous test cases with the explicit

2-stage Hancock scheme. The details of the implementation are given here. The follow-

ing set of equations explain the formulation for frozen simulations. In NASCART-GT, the

chemical source terms are computed using a point-implicit solver; therefore, they were ex-

cluded from the LU-SSOR formulation. Details regarding the extension to reacting flows

will follow the perfect gas implementation details.

The LU-SSOR scheme is based on the linearization of the governing Navier-Stokes equa-

tions. Steger-Warming flux vector splitting [91] is applied to the Jacobian terms to avoid

the inversion of a large block banded matrix, replacing it instead by forward and backward
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relaxation sweeps through the computational domain. This scheme has been implemented

in a manner such that time integration has been decoupled from the spatial discretization.

Therefore, the explicit formulation of the viscous (2nd order central differenced) and inviscid

(Roe’s, AUSMPW+, etc.) fluxes can still be utilized in computing the residuals required in

the LU-SSOR formulation.

The finite-volume temporal and spatial discretization results in:

Un+1
i,j,k = Un

i,j,k −
∆tni,j,k
Vi,j,k

[

βRn+1
i,j,k + (1− β)Rn

i,j,k

]

(70)

where R is the residual at the (i, j, k) location. Depending on the values that β takes,

this formulation can represent different schemes (Table 2):

Table 2: LU-SSOR formulations

β Resulting formulation

0 Explicit time integration

0.5 Second-order semi-implicit time integration (Crank-Nicholson)

1 First-order fully-implicit time integration

Rearranging Eq. 70 and removing the (i, j, k) notation for simplicity, the time-marching

form of the implicit upwind scheme can thus be written as [109, 33]:

Vi,j,k [I+ β∆t{δxA+ δyB+ δzC}]∆U = −∆tRn (71)

where,

Rn = δxF+ δyG+ δzH (72)

The Jacobians in Eq. 71 are defined as:

A = (∂F/∂U)n B = (∂G/∂U)n C = (∂H/∂U)n (73)

∆U = Un+1 − Un is the increment vector of the conservative variables for time step ∆t.

It should be emphasized here that the Jacobian terms consist of the inviscid terms alone

in this formulation [42]. When Steger-Warming flux vector splitting is applied to the flux

terms in this linearized equation, the unfactored system produces a large block banded
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matrix which requires expensive matrix inversion computation. However, the system can

be further simplified to obtain a matrix-free expression with significantly less computational

cost. For this purpose, the split Jacobian matrix terms are approximated by their spectral

radii. Here, A+
i,j,k, A

−
i,j,k, B

+
i,j,k, B

−
i,j,k, C

+
i,j,k and C−

i,j,k are constructed as follows:

A±
i,j,k =

1

2
[Ai,j,k ± ρAI] =⇒ A+

i,j,k −A−
i,j,k = ρAI (74)

B±
i,j,k =

1

2
[Bi,j,k ± ρBI] =⇒ B+

i,j,k −B−
i,j,k = ρBI (75)

C±
i,j,k =

1

2
[Ci,j,k ± ρCI] =⇒ C+

i,j,k −C−
i,j,k = ρCI (76)

This ensures that the eigenvalues of the “+” matrices are non-negative and those of the

“-” matrices are non-positive [109]. Here, ρA, ρB, ρC are the inviscid spectral radii of the

Jacobians A, B and C. Substituting these approximations back into the Steger-Warming

FVS form eliminates the need for matrix inversion. This is instead replaced with forward

and backward relaxation sweeps, which account for the symmetric successive overrelaxation

steps.

The LU-SSOR scheme can thus be summarized as:

LLUD
−1
LUULU∆U = −Rn (77)

where,

LLU = DLU + L∗
LU ULU = DLU +U∗

LU DLU = {
1

∆t
+ β(ρA + ρB + ρC)}I (78)

and

L∗
LU = −A+

i−1,j,k −B+
i,j−1,k −C+

i,j,k−1 U∗
LU = −A−

i+1,j,k −B−
i,j+1,k −C−

i,j,k+1 (79)

This solution procedure can be extended to viscous flow computations by incorporating

the viscous Jacobians, which are approximated by their spectral radii as:

ρvA = ρvB = ρvC =
γ

Pr

µ

ρd
(80)

where, γ is the ratio of the specific heats, Pr is the Prandtl number, µ is the molecular

viscosity, ρ is the density and d is the distance between the centers of adjacent grid cells
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[20, 18]. By using this approximation of the Jacobian of the viscous terms (using the viscous

spectral radii), the diagonal form of the scheme is not disrupted.

This formulation of the LU-SSOR scheme does not include the source terms associated

with reacting flows either. In NASCART-GT, Lee [51] installed a point-implicit chemistry

solver to compute the chemical source terms for inviscid thermochemical nonequilibrium

problems. With that already implemented, a novel strategy to compute viscous chemically

reacting flows has been setup. Just as the spatial discretization and temporal integration are

decoupled, so is the point implicit solver that computes the chemical source term. Thus,

the solver calculates this term independently based on the state vectors at the previous

time. Then, the LU-SSOR time integration procedure updates the rest of the state vectors,

resulting in an efficient update of the flow properties. By not interfering with the LU-SSOR

time integration, no additional computational cost is incurred. Of course, the state vectors

in the viscous spectral radii are computed taking into account the thermochemical nonequi-

librium in the flow. Thus, the chemically reacting nature of the flow field is preserved. The

details of the point-implicit chemistry solver are given in the next section.

3.2.5 Point-Implicit Chemistry Solver

With the introduction of the chemical source term, a point-implicit methodology was im-

plemented in NASCART-GT involving an Ns × Ns matrix inversion for each cell in the

computational domain [51].

For each cell, the conservation equations can be represented in the following vector form:

∂ [U]

∂t
V +R (Un) = [S]n+1 V (81)

where, V is the cell volume and R is the sum total of the flux terms. Using the Taylor

series to expand the species production term yields:

[S]n+1 ≈ [S]n +
∂ [S]n

∂ [U]n
d [U]

dt
∆t (82)

Substituting and rearranging the conservation equation results in:
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{

I−∆t
∂ [S]n

∂ [U]n

}

d [U]

dt
V +R (Un) = [S]n V (83)

Using LU decomposition, the final time integration routine can be written in the follow-

ing format:

d [U]

dt
V =

{

I−∆t
∂ [S]n

∂ [U]n

}−1{

[S]n V −R (Un)

}

(84)

3.2.6 Time Stepping Strategy

For the time integration of the governing equations, an appropriate time step must be

considered based on the stability criterion of the scheme used. For the explicit 2-step

Hancock scheme, Lee [50] extended the standard inviscid CFL number-based time-step

criterion to account for the viscous terms. That formulation is given in Eq. 85.

∆tni,j,k = CFL×min























∆xi,j,k
[

(|ui,j,k|+ ci,j,k)
(

1 + 2
Re∆x

)]−1
,

∆yi,j,k
[

(|vi,j,k|+ ci,j,k)
(

1 + 2
Re∆y

)]−1
,

∆zi,j,k
[

(|wi,j,k|+ ci,j,k)
(

1 + 2
Re∆z

)]−1























(85)

For the viscous hypersonic simulations, this time stepping strategy was found to be

lacking due to the thermal effects being more restrictive than the viscous effects. The

solution was found to be unstable even for very low CFL numbers. Therefore, an alternative

time-stepping scheme was implemented, which was derived using a heuristic argument based

on the relationship between the stability criteria in one- and multi-dimensions [80]:

∆tni,j,k ≤ ∆x2i,j,k

[

∆xi,j,k
(

|ui,j,k|+ |vi,j,k|+ |wi,j,k|+ ci,j,k
√
2
)

+
2µ

Reρ

(

2γ

Pr
+

√

2

3

)]−1

(86)

This formulation was originally designed for an explicit scheme. However, it was also

used for the implicit LU-SSOR scheme with much higher CFL numbers. The expression in

Eq. 86 is a 3-D extended form of the 2-D formulation in Ref. [80].
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3.3 Boundary Conditions

In NASCART-GT at the start of the simulation, freestream conditions are set throughout

the computational domain. Starting with the first time iteration, the effects of the surface

boundary conditions propagate throughout the domain until a steady state is reached. With

this strategy, it is important to set appropriate inflow/outflow, as well as surface boundary

conditions.

3.3.1 Inflow/Outflow BCs

Inflow and outflow boundary conditions in NASCART-GT are based on the characteristics of

the flow solution. Information about the flow propagates along the characteristic directions,

where the Riemann invariants remain constant. Table 3 lists the Riemann invariants and

corresponding characteristics for a perfect gas simulation.

Table 3: Characteristics and Riemann invariants

Characteristics Riemann invariants

dx/dt|1 = u R1 = P/ργ

dx/dt|2 = u R2 = v

dx/dt|3 = u R3 = w

dx/dt|4 = u+ a R4 = u+ 2a/(γ − 1)

dx/dt|5 = u− a R5 = u− 2a/(γ − 1)

For subsonic flows, the variables R1, R2, R3 and R4 are propagated from the exterior

and R5 from the interior of the computational domain along the inflow boundary. Similarly,

R1, R2, R3 and R4 are propagated from the interior and R5 from the exterior of the domain

along the outflow boundary. All flow variables are, therefore, calculated from the specified

Riemann invariants along the inflow and outflow boundaries. For supersonic flow along the

inflow boundary all 5 invariants are propagated from outside to inside of the domain, and

from inside to outside of the domain along the outflow boundary.

For flows in thermochemical nonequilibrium, a simple extrapolation of the conserved

state variables is done from the interior of the computational domain to the exterior.
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3.3.2 Immersed Boundary Ghost Cell Approach

First, a note on the nomenclature used in this section is warranted. Cells in the flow domain

that do no have surface panels intersecting them are considered “flow cells.” Those that

have panels slicing through them are termed “surface cells.” The cells in the interior of the

body that are used in the immersed boundary methodology are called “ghost cells.”

The most significant difficulty in using Cartesian unstructured grids has to do with the

definition of the surface of the immersed body. The fact that the volume mesh adjacent

to the surface is usually not body-aligned makes it imperative to use special techniques to

handle the cells that are sliced through by the surface panels. The treatment of these surface

cells can vary depending on the methodology used to set or compute the state vectors at

their cell centers/centroids, and how they are treated during the flux integration process.

Flow cells

Surface cut−cells

Figure 5: Schematic of cut-cell approach

In the cut-cell approach, cells generated by the intersection of the surface panels and the

computational mesh result in trapezoidal shapes, as shown in Fig. 5. This method has been

used extensively with varying levels of success in computing fluid flows under many different

conditions [19, 98, 106, 37]. A common problem with this approach is the generation of very

small cells due to the orientation and location of the surface panels with respect to the grid

cells. Such tiny cells cause non-physical fluctuations in the flow variables near the body, in

addition to increasing the stiffness of the problem. Additionally, depending on the shape of

the geometry, cut-cell sizes could vary significantly along the surface, adding to the noise in
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the surface property predictions. Besides, since cut-cell centroids are generally not aligned

with the flow cell centers, the order of accuracy of the spatial discretization gets reduced

during flux integration. One strategy to overcome these issues is by merging the tiny cut-

cells with those that are adjacent to them, thereby reducing the stiffness of the equations.

More recently, Berger and Aftosmis [7] have included a wall model to mitigate the effect

of the mesh irregularities while using cut-cells, and have shown good predictions of skin

friction and surface pressure distributions for turbulent flows. One important advantage of

using the cut-cell approach is that the conservation laws at the wall are exactly satisfied.

Surface cut−cells

1 2 3 4

5 6 7 8

9 10 11
12

R
RR R10

9

11

12

Flow cells

Figure 6: Schematic of embedded boundary method

An alternative method is the embedded boundary method where the surface cut-cells

are removed from the flux integration formulation, thereby eliminating the stiffness problem

that arises due to smallness of these cells. The flow properties at the centroid of the cut-cells

are instead set based on reference points chosen in the flow domain from where the values are

extrapolated [58, 59]. For example, in Fig. 6, the state vectors at the centroids of the cells

numbered 9, 10, 11 and 12 are based on the properties at the reference points represented by

R9, R10, R11 and R12. The properties at the reference points are interpolated from the state

vectors at the centers of the grid cells in which each reference point lies (cells 5, 6, 7 and 8,

respectively), and the neighbors of these cells. Marshall implemented this methodology in

NASCART-GT [57], and used it in the computation of Euler and Navier-Stokes equations.

Since the flow properties are extrapolated to the centroid of the cut-cells, determining the

41



www.manaraa.com

centroids added to the computational cost. Also, the non-alignment of these centroids with

the flow cell centers still resulted in reducing the order of accuracy of flux integration near

the wall. Additionally, this methodology does not explicitly guarantee the satisfaction of

the conservation laws at the wall panels.

Flow cells

Surface cells

Ghost cells

1 2 3 4

5 7 8

9
10 11

13 14 15 16

R
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R

W
W

W
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14
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15
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16

15
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14

13

12

Figure 7: Schematic of immersed boundary ghost-cell
approach

In the immersed boundary method, even though surface panels cut through the com-

putational mesh, surface cells are retained in their entirety, which eliminates some of the

problems faced in using the cut-cell or the embedded boundary approach (stiffness of the

problem, orientation of centroid with respect to the flow cells). Flux integration is carried

out at their cell centers just as they are for flow cells. Lee [50] implemented this ghost

cell approach in NASCART-GT with specific emphasis on subsonic turbulent flows. This

methodology is explained further in view of hypersonic applications.

Consider the flux integration stencil used in a Cartesian grid solver as shown in Fig. 8.

To update the state vectors in cell number 6 for a 2nd order accurate spatial integration

scheme, the state vectors of 2 neighboring cells along each direction are needed to be known

(cells 7, 8 along the positive X direction, 5, 23 along the negative X direction, 2, 34

along the positive Y direction and 10, 14 along the negative Y direction). Additionally for

viscous flow simulations, cross derivative terms for shear stress calculations require the state

vectors in cells numbered 3, 11, 1 and 9. This stencil represents the cells required in the

flux integration scheme for a 2-D case; this can be easily extended to a 3-D flow calculation.
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Figure 8: Viscous stencil: Immersed boundary ghost
cell approach

In this stencil, cells numbered 7, 8, 5, 23, 2, 34, 3 and 1 are all flow cells and therefore

have valid state properties assigned to their centers. Cells 11, 10 and 9 are surface cells that

are included in the flux integration, and they as well have appropriate state vector values

assigned to their cell centers. Cell number 14 on the other hand is completely inside the

surface of the geometry and is turned off during flux integration. Therefore, appropriate

state properties are required to be set there to complete the flux integration stencil. The

methodology used to assign appropriate flow property values at the centers of such cells

(ghost cells) forms the crux of the immersed boundary ghost cell approach.

To assign appropriate state values at the ghost cell, a “reference point” in the flow is

identified; for cell number 14, the corresponding reference point is marked R14 in Fig. 7.

Based on the state properties at this reference point and the known boundary conditions

at the wall (W14), values at the ghost cell are appropriately extrapolated.

Reference points in most cases do not coincide with the centers of flow or surface cells.

Therefore, appropriate state vector properties are interpolated to these using a 2nd order

accurate distance-weighted least-square formulation. The location of the reference point is

chosen along the wall normal direction from the ghost cell, and the distance (δR14) is set to
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half the diagonal length of the surface cells. Previous investigations have shown that setting

the reference points at a uniform distance from the surface yielded smoother variations of

the surface properties compared to varying this parameter along the wall. For example, an

alternative strategy to locate the reference points would be to use the distance between the

ghost cell and the surface (δG14) as the same as the distance from the surface to the reference

point (δR14). Depending on the curvature of the body, this can result in large variations

in the reference cell distances along the surface, which can lead to large fluctuations in the

interpolated reference cell properties. This adversely affects the ghost cell values, which

impacts the flux integration of the surface cells.

Once the reference point location is decided, the cell within which it lies is identified,

and its neighboring cells are determined. This strategy is similar to that followed in the

embedded surface boundary condition. Using a 2nd order accurate distance-weighted least-

square formulation, the state vector at the reference point is interpolated using the values

at the 3 closest cells that surround the reference point. In the stencil shown in Fig. 8, these

would be cells numbered 6, 2 and 5. Thus, using the interpolated state properties at the

reference point and the known boundary conditions at the wall, the values are extrapolated

linearly to the ghost cell.

For the 1st five governing equations (basic Navier-Stokes), the values of 5 different state

properties are required to be known at the wall to completely define the state vector at the

ghost cell. Depending on the type of flow being simulated, the wall values vary accordingly.

Additionally, for flows in thermochemical nonequilibrium, information regarding the species

concentrations and the vibrational energy/temperature are also required to completely de-

fine the state at the ghost cell.

For example, in viscous simulations the velocity of the fluid at the wall is uniformly zero

throughout (no-slip BC); therefore, by using the interpolated values of the components of the

fluid velocity at the reference point (uiR14
) and the no-slip boundary condition (uiW14

= 0),

the 3 components of the velocity at the ghost cell (ui14) can be determined using a linear

extrapolation formulation:

ui14 = −
(

δG14

δR14

)

uiR14
(87)
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To set the pressure at the ghost cell, the normal momentum equation is considered

across the wall. In the simulations presented in this thesis, a flat-wall boundary is assumed

at the surface panels, and therefore the pressure gradient normal to the wall is taken to be

zero; i.e. the pressure at the reference point and the ghost cell are taken to be the same:

P14 = PR14 (88)

Considering that the simulations presented here involve laminar boundary layers and

that the surface cells that are used to resolve the boundary layers are small enough to

capture the gradients well (resulting in very small distances between the reference point

and the surface panels), this assumption conforms to that used in deriving the Blasius

boundary layer equations, where the normal pressure gradient at the wall is considered to

be zero.

For the temperature at the ghost cell, depending on the type of wall being simulated,

the value at the ghost cell is set accordingly. For instance, if the wall is considered to be

adiabatic, heat flux across the surface panels is zero. Thus, temperature at the ghost cell

is set to the interpolated reference point temperature:

T adiabatic
14 = TR14 (89)

For the isothermal wall boundary condition, a linear extrapolation of the reference point

and the wall temperatures is set at the ghost cell center:

T isothermal
14 = TW14 +

(

δG14

δR14

)

(TW14 − TR14) (90)

Thus, with the extrapolated velocities, pressure and temperature at the ghost cell,

the conserved state vector at this cell center is computed using perfect gas relations and

the definitions of the momentum and total energy. For reacting cases, in addition to the

aforementioned state variables, information regarding the species concentration gradients

at the wall are also required. For the non-catalytic wall boundary condition that is being

modeled in this research effort, these gradients across the surface are assumed to be zero as

well. Therefore, the species mole fractions at the ghost cell center are set to the interpolated
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reference point values:

χs
14 = χs

R14
(91)

Of course, for various catalytic wall boundary conditions, this assumption will fail, and

the individual species mole fractions at the ghost cell center will have to be determined

according the wall catalycity and the ghost cell temperature. In addition, the vibrational

temperature is also extrapolated linearly from the reference point value to the ghost cell

center.

T isothermal
v14 = TW14 +

(

δG14

δR14

)

(TW14 − TvR14) (92)

As for reacting cases, the state variables are computed taking into account the local

species concentrations and the temperatures at the reference point and the ghost cell center.

For example, to determine the density at the ghost cell, a pseudo-perfect gas relation is used

where the gas constant is determined based on the local chemical composition of the gas.

A note on the temperature extrapolation for hypersonic flow conditions: While setting

the temperature at the ghost cell center based on the values at the reference point and the

wall temperature, additional checks had to be installed to ensure non-physical values were

not being computed here. This was largely not seen in subsonic and supersonic cases where

the temperatures in the boundary layer were not exceedingly high; but in hypersonic flow

conditions where the boundary layers can reach very large magnitudes of temperatures, of

the order of O(10, 000 K), the linear extrapolation can lead to negative temperatures being

computed at the ghost cell centers. This is explained using an example here.

Suppose the simulated flow conditions result in a reference cell temperature of 2000

K (TR14 in Fig. 8) for an isothermal wall at 500 K (TW14); if the reference point and the

ghost cell were equidistant from the surface (δG14 = δR14), based on the linear extrapolation

formulation, the temperature at the ghost cell center (T14) would be computed to be -1500

K! To avoid such non-physical values here, NASCART-GT follows a clipping strategy that

prevents this temperature from being set to values below a prescribed threshold limit. For

example, if this limit was set to half the reference cell temperature (TR14/2 = 1000 K), then

the ghost cell would be set to 1000 K (instead of -1500 K). Naturally, this would imply

that the wall temperature which the fluid sees would not correspond to the value set during
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the start of the simulation (TW14 = 500 K). Such a shortfall is countered by the adaptive

refinement strategy which includes the refinement of the surface cells. Again, assuming the

same linear variation of the temperature across the wall, if the cell sizes were half of those

used in above example, then the temperatures at the reference point (TR14) and the ghost

cell (T14) would be computed to be 1000 K and 0 K, respectively. By using the same clipping

strategy, this would limit the ghost cell temperature and set it at 500 K (instead of 0 K).

If the grid cells were refined to one additional refinement level, the reference point would

have a temperature of 500 K, as would the the ghost cell (since TW14 = 500 K). Since this a

realistic value (T14 = 500 K), this temperature is not clipped and the immersed boundary

method would reflect the exact temperature set during the start of the simulation.

During the preliminary investigations, a series of temperature clipping strategies were

analyzed and the most stable of those was chosen for the cases presented in the results

section. Comparisons of two such implementations are presented there. Additionally, alter-

native strategies for setting the ghost cell temperatures were also considered. These involved

setting 2 different temperatures at the ghost cell, one for the inviscid flux calculation and

the other for the viscous flux calculation. For the inviscid fluxes, as the temperature at the

ghost cell hardly influences the terms here, this could correspond to an adiabatic wall setup

(T14 = TR14). And for the viscous flux terms, since the gradient of the temperature alone

is required in determining the heat flux terms here, this temperature could actually be set

to a negative value (and the gradient would correspond to the actual wall temperature).

Preliminary investigations into this strategy showed good predictions of the thermal bound-

ary layer, but the noise associated with this implementation required a much more detailed

research effort. This has been left as a future area of study in the immersed boundary ghost

cell methodology.

3.4 Solution Adaption

The solution adaptive mesh refinement strategy used in NASCART-GT has been described

by Tu [97], Marshall [57], Lee [50] and Lee [51]. In each of these references, strategies

used to adapt the cells for specific flow conditions encountered are described. In a similar
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manner, the refinement approach was adjusted for the viscous hypersonic flows, and the

strategy followed is described here.

In each flow cell, the gradient of the velocity divergence, vorticity, pressure or the species

mass fractions, represented by φ, is computed and scaled to the cell dimension as:

τφi,j,k = φ× l3/2i,j,k (93)

where, l is the cube-root of the cell volume. The average root-mean-square of the gradient

throughout the computational domain is then determined for the reference value as:

σφ =
1

N

N
∑

i=1

τ2φ (94)

where, N is the total number of flow cells. Depending on whether the local gradient is less

than or greater than the domain averaged threshold value for unrefinement and refinement,

respectively, the cell is appropriately modified, i.e.

τφi,j,k < κU × σφ, Unrefine

τφi,j,k > κR × σφ, Refine (95)

where, κU and κR are the user-input threshold values for unrefinement and refinement. In

addition to the existing solution adaption parameters, temperature and stagnation enthalpy

gradients based refinement were introduced to capture the gradients in the stagnation region

accurately. As the fluid comes to a standstill in this region, gradients of the previously listed

properties failed to effect the refinement of coarse cells, severely impacting the stagnation

point convective heating rate predictions. Including temperature and stagnation enthalpy

based gradients in the adaptive refinement strategy resulted in a much better suited grid

for computing heating rates. The impact of this implementation is explained further in the

results section.

In addition to the existing adaptive mesh refinement strategy, which loops through the

list of flow cells alone in the computational domain to evaluate gradients of one or more

of the aforementioned list of parameters, refinement of the surface cells after the start

of the simulation was included in the solver. Given the smallest cell size requirement to
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make reasonable predictions of the surface quantities in hypersonic flow conditions, this

implementation enabled the option of restarting converged coarse grid simulations with

refinement turned on to include surface cells, and improve upon the already developed coarse

grid solutions. This strategy dramatically improved the convergence rates of the simulations,

which would have otherwise taken significantly longer periods of time to converge due to

the excessive number of cells generated.

Two implementations of the surface cell refinement strategy were tested in the process.

These are explained with the help of representative grids in Figs. 9-12. Figures 9 and

10 show the initial and final coarse grids that were used for a hypersonic inviscid flow test

case. The first refinement strategy involved the surface cells and their neighbors alone in the

computational domain, leaving the rest of the flow cells at lower refinement levels (coarser

cells) (Fig. 11). The second setup included the surface cells in the regular solution adaption

process, whereby all the cells in the computational domain would have their refinement

levels increased at the same time (subject to the refinement thresholds) (Fig. 12). The

former resulted in fewer cells in the computational domain, but ended up having significant

refinement level differences between surface and flow cells over very short distances. The

latter generated more number of cells, but there was a more systematic order in which the

cell sizes dropped.
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Figure 9: Solution adaption strategies: Initial coarse grid

Figure 10: Solution adaption strategies: Converged coarse grid
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Figure 11: Solution adaption strategies: Surface cells refinement only

Figure 12: Solution adaption strategies: Solution adaption including
surface cells
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CHAPTER IV

FROZEN FLOW RESULTS - I

4.1 Introduction

The goal of predicting variations in the pressure, skin friction and convective heating rates

at the surface for hypersonic flows is a challenging task given the complex physics and

chemistry associated with such flows. The problems associated with computing the sharp

gradients and the chemical source terms add to the difficulty, requiring adequate care in the

choice of spatial and temporal discretization schemes. Using an unstructured Cartesian grid

solver for making these estimates causes the problem to be all the more challenging because

of the non body-aligned and shock-aligned nature of the computational grid cells. But

given their inherent advantages in the ease of grid generation around complex geometries

and adaptive mesh refinement capabilities, it is important to establish the strengths and

shortcomings of using such a framework in computing complex flows. Such a heuristic study

will not only serve as a benchmark for future calculations of similar flow conditions, but it

will also aid in furthering the state-of-the-art in the field.

In the current investigation of the immersed boundary methods, a simple 2-D test case

was first identified, and preliminary analysis of the workings of the framework were stud-

ied. Following that, more complex flows that involve interactions between shock waves

and boundary layers were chosen to further evaluate the accuracy of the predicted surface

properties, simultaneously emphasizing the inherent advantages of the solution adaptive ca-

pability of unstructured Cartesian grids. Each of these tests were conducted with frozen gas

flows for the preliminary investigations. To further demonstrate the predictive capability of

the solver, a range of hypersonic freestream Mach numbers were chosen for an axisymmet-

ric test case, and the overall trend in the heating estimates were compared with empirical

relations and experimental results. Finally, flow predictions for 2-D geometry in a thermo-

chemical nonequilibrium environment with both adiabatic and isothermal wall boundary
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conditions were made and compared with reference body-fitted grid results, confirming the

effectiveness of using the immersed boundary ghost cell methodology in predicting convec-

tive heating for hypersonic flow conditions.

4.2 Frozen Flow Surface Prediction Comparisons

To evaluate the convective heating rate prediction capability using unstructured Cartesian

grids at hypersonic Mach numbers, the choice of preliminary test cases should take into

account the relative computational costs associated with the preparatory investigation. For

instance, higher Reynolds number flows result in thinner boundary layers, which require

extremely small surface cells for adequate resolution. This increases the total number of cells

in the computational domain, adding significantly to the cost of the computations. Instead,

flows with lower freestream Reynolds number can be used as preliminary test conditions,

but here too care must be taken to ensure that the continuum hypothesis is not invalidated

in the process. Since Kn ∝ M/Re, at the same Mach number, lower Reynolds numbers

result in higher Knudsen numbers (more prone to rarefaction). Furthermore, reducing the

freestream Mach number to ensure continuum is not an option, since that would defeat the

purpose of the investigation (hypersonic heating predictability).

Lofthouse [54] identified a series of test conditions for comparing heat transfer predictions

for Mach 10 and 25 flows past a cylinder (argon and nitrogen gases). Even though these

tests were catered towards comparing predictions using a DSMC code (MONACO) and a

Navier-Stokes solver (LeMANS), the conditions are ideal for this preliminary investigation of

the surface pressure, skin friction and convective heating rate predictions. In that reference,

the choice of the Reynolds and Knudsen numbers resulted in establishing the advantages

and disadvantages of using molecular dynamics and/or continuum flow solver at various

rarefied/continuum regimes.

From those cases, two were identified for the hypersonic flow tests past a cylinder of

radius 12 in. (0.3048 m) using NASCART-GT. Mach 10 flow of argon gas was chosen,

since argon, being an inert monatomic gas, would ensure the absence of thermochemical

nonequilibrium phenomena in the flow. For each test case, the freestream Reynolds number

53



www.manaraa.com

Table 4: Mach 10 argon flow conditions

Re∞ Kn∞ ρ∞ [kg/m3] P∞ [Pa]

289 0.050 5.636×10−6 0.2346

1445 0.010 2.818×10−5 1.1642

and density were appropriately set to analyze flow conditions at a constant freestream

velocity (≈ 2624 m/s). The cylinder wall was set at 500 K and the freestream was computed

to be at 200 K. For these tests, the front half of the cylinder alone was considered to avoid

the rarefied wake region, where the continuum assumption often fails. This also resulted

in far fewer cells as the solution adaption feature of NASCART-GT otherwise tended to

automatically generate excessive number of cells to resolve the vorticular structures in the

wake. The freestream Reynolds numbers for the test cases were approximately 289 and

1445, and the corresponding Knudsen numbers were 0.050 and 0.010, respectively. The

conditions are summarized in Table 4.

It should be pointed here that according to Ref. [54], continuum breakdown was observed

for the Kn = 0.01 and 0.05 cases in regions within the shock wave and some portions of the

boundary layer. Therefore, differences were observed between the predicted properties using

the DSMC code and the Navier-Stokes solver in these regions. The plots of the variations

of the Knudsen number in the domain from that reference are shown in Figs. 13 and 14.

For these flow conditions, grids of different specifications were used for each case. Sim-

ulations were started with initial coarse grids and run to convergence. In the process,

solution adaption of these coarse grids was performed at specified intervals. The initial

adaptive refinement strategy included the flow cells alone, keeping the smallest size of the

cells the same. Once the coarse grid converged solution was reached, additional refinement

cycles that included the surface cells in the adaption process were started. During each

such refinement cycle, the smallest cell in the domain was split into 4 (2-D), reducing the

minimum cell size by 50% each time. This resulted in the better resolution of the surface

variations of the pressure, velocities and temperature.

Each test case was run using NASCART-GT’s implicit LU-SSOR scheme, allowing for
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Figure 13: Kn around cylinder in Mach 10 argon: Re∞ = 289 [54]

Figure 14: Kn around cylinder in Mach 10 argon: Re∞ = 1445 [54]
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CFL numbers to be ramped up from 0.1 to 10,000. The inviscid fluxes were extrapolated

to the faces to 2nd order accuracy using the MUSCL scheme. “osslimit” in the flux limiter

was set at 0.05. AUSMPW+ scheme was used to spatially discretize the inviscid fluxes, and

the corresponding viscous terms were computed using a central difference scheme. For the

temperature clipping strategy adopted in the immersed boundary ghost cell approach, the

minimum limit for the ghost cell temperatures was set to half the reference cell temperatures.

The results of these simulations are presented here.

4.2.1 Cylinder in Mach 10.0 Argon Flow

4.2.1.1 Re 289, Kn 0.05

Figures 15 and 16 are representative coarse and fine grids used for the Re 289 test case.

At such a low Reynolds number, this case was dominated by viscosity resulting in a very

thick boundary layer enveloping the cylinder. The advantage of using this setup was that

reasonably coarse surface cells could be used to capture the gradients within the boundary

layer. The drawback, on the other hand, was that these conditions meant that the flow was

prone to rarefaction, especially at such high Mach numbers.

The coarse converged grid accounted for approximately 4,500 cells with the smallest cell

size ∆x = 4.7×10−3 m. The finest grid used for this freestream condition resulted in a total

of approximately 7 million cells, with the corresponding smallest cell size ∆x = 7.4× 10−5

m. At such low Reynolds numbers where viscosity dominates the flow, the resulting shock

wave and boundary layer were considerably thicker that those generally seen for higher

Reynolds numbers. With smooth gradients in the flow properties across such larger areas,

the resulting number of cells turned out to be quite large.

Contours of the Mach number, pressure and temperature gradients in the computational

domain are presented in Figs. 17-22. As mentioned above, the gradients in the flow are very

smooth given the magnitude of the freestream Reynolds number. The results show the

evidence of a very thick bow shock wave and boundary layer, which the finer cells resolved

better. Again, with the finer grids, the thermal boundary layer was resolved better and a

cooler fluid was computed near the wall; thereby, the density in this region was seen to be
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Figure 15: Mach 10, Re 289 flow: coarse grid

Figure 16: Mach 10, Re 289 flow: finer grid
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higher, which marginally reduced the shock stand-off distance.

These results compare very well with those presented by Lofthouse [54]. The shock

stand-off distances are very similar, and the peak temperature computed in the post-shock

wave region are identical (≈ 6500 K).

Predictions of the pressure coefficient, skin friction coefficient and the convective heat

transfer rate are presented in Figs. 23-25. Results from the DSMC code (MONACO) and

the reference Navier-Stokes solver with no-slip boundary conditions (LeMANS) are overlaid

in these plots, to evaluate and analyze the trends of the surface property predictions. Each

of these are plotted along the circumferential-angle direction. Each plot shows the results of

the simulations using 3 representative grid cell sizes, to show the evidence of the progress of

the solution trend as the surface cell refinement cycles kick in during the solution adaption

routines in NASCART-GT.

The overall prediction of the pressure coefficient matches well with the reference com-

putational results. Cp in the stagnation region is somewhat under-predicted for the finer

grid cells, but the general trend of the variation matches perfectly with the other code pre-

dictions. The smoothness of the curves compare very well with reference variations, and is

least sensitive to the non-body conforming nature of Cartesian unstructured grids.

The next 2 plots show the comparisons of the variations of shear stress (skin friction

coefficient) and heat flux along the surface of the cylinder. It is evident that the predictions

of NASCART-GT tend to be significantly noisier compared to the reference results, and

even when compared to its own Cp predictions. Both the skin friction and the convective

heat flux are computed based on the gradients of the velocities and temperature at the

surface of the geometry, whereas Cp is computed using the absolute pressure value at the

wall.

In the immersed boundary ghost cell approach, the normal gradient of the pressure at the

wall is set to zero, whereas temperature and velocities have non-zero variations. For these

non-zero gradients, the values set at the ghost cell center are dependent on the distances

of the reference point and the ghost cell center from the wall panel. The reference point

distance is held constant in these simulations, but the ghost cell center distance from the
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Figure 17: Mach 10, Re 289 flow: Mach contours: coarse grid

Figure 18: Mach 10, Re 289 flow: Mach contours: finer grid
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Figure 19: Mach 10, Re 289 flow: pressure contours: coarse grid

Figure 20: Mach 10, Re 289 flow: pressure contours: finer grid
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Figure 21: Mach 10, Re 289 flow: temperature contours: coarse grid

Figure 22: Mach 10, Re 289 flow: temperature contours: finer grid
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Figure 23: Cp distribution: Mach 10, Re 289

panel varies depending on how and where each panel cuts the Cartesian grid. This leads to

some small fluctuations in the surface properties.

Further, interpolation at the reference point depends on the its distance to 3 closest

surrounding cell centers. For curved surface, these distances can vary significantly, causing

further fluctuations in the reference point values.

The noisiness in the Cf and q̇w predictions is evidence of such issues facing the immersed

boundary ghost cell approach. The magnitudes of the predictions, on the other hand,

compare very well with the reference values, showing evidence of improvement as the surface

cell size drops.

In the plots, the progression of the smallest cell size is presented in the form of the

maximum Reynolds number based on the properties at the wall. This is defined as:

Rewall = ρwall × awall ×∆xwall/µwall (96)

where, awall is the speed of sound at the wall temperature.

Previous studies [90, 6] have shown that this parameter plays a very important role in

62



www.manaraa.com

0 30 60 90
Circumferential Angle, degrees

0

0.05

0.1

0.15

0.2

0.25

Sk
in

 F
ric

tio
n 

Co
ef

fic
ie

nt
, C

f

Lofthouse: CFD no-slip BC
Lofthouse: DSMC
NASCART-GT: Recell 4
NASCART-GT: Recell 2
NASCART-GT: Recell 1

Figure 24: Cf distribution: Mach 10, Re 289
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Figure 25: q̇w distribution: Mach 10, Re 289
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the accuracy of the surface gradients, in particular the convecting heating rate. As seen in

the plots, the skin friction coefficient and the heat transfer rate tend to be more sensitive to

the wall Reynolds number magnitude than the surface pressure variation. A very accurate

definition of the velocity and thermal boundary layer is critical in the accurate prediction

of the skin friction and the convective heat transfer, respectively. The impact of Rewall will

be seen in more detail in the subsequent tests.

4.2.1.2 Re 1440, Kn 0.01

The next test case involved an intermediate Reynolds number of 1440, which is slightly

higher than the previous setup; this resulted in a flow defined by a lower Knudsen number

(0.01). Similar comparisons between simulations using the immersed boundary ghost cell

framework of NASCART-GT were made with the results from LeMANS and MONACO [54].

At this higher Reynolds number, both the boundary layer and the shock wave thicknesses

were significantly smaller than the previous test case as the effect of viscosity was being

countered by the more forceful convection phenomena in the flow. The thinner boundary

layer meant that smaller cells were required to accurately capture the temperature and

velocity gradients here, once again resulting in a significantly large number of cells. Solutions

were converged to on a coarse and fine grid using the solution adaption strategy explained

earlier, as shown in Figs. 26 and 27, respectively. The coarse grid consisted of 7,400 cells,

with the smallest size ∆x = 2.4 × 10−3 m. The finest grid used in this test case consisted

of 968,500 cells, with the minimum cell size being ∆x = 1.5× 10−4 m.

Similar to the previous case, the off-surface flow features were predicted very well by the

Cartesian grid solver, with the finer grid simulation naturally capturing the gradients more

effectively. The peak temperature once again compares very well with the reference values,

as do the shock shape and stand-off distance. Similar contour plots of the Mach number,

pressure and temperature variations are shown in Figs. 28-33.

The pressure distribution along the surface compares very well with the reference, falling

on top of both the DSMC and the CFD solver predictions for the entire range of surface

cell sizes. The skin friction and the heat transfer rates, on the other hand, show significant
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Figure 26: Mach 10, Re 1445 flow: coarse grid

Figure 27: Mach 10, Re 1445 flow: finer grid
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Figure 28: Mach 10, Re 1445 flow: Mach contours: coarse grid

Figure 29: Mach 10, Re 1445 flow: Mach contours: finer grid
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Figure 30: Mach 10, Re 1445 flow: pressure contours: coarse grid

Figure 31: Mach 10, Re 1445 flow: pressure contours: finer grid
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Figure 32: Mach 10, Re 1445 flow: temperature contours: coarse
grid

Figure 33: Mach 10, Re 1445 flow: temperature contours: finer grid
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Figure 34: Cp distribution: Mach 10, Re 1445

deviations from the reference values for the entire range of cell sizes. In addition to being

under-predicted, the shear stress at the surface is significantly noisier compared to the

reference predictions. The heat transfer rate magnitude fares better, but here too the effects

of the non-uniformity of surface panel sizes and orientations is evident. The peak heating

rate predicted by NASCART-GT overshoots the reference peak, and the curve starts to

deviate from the reference plots along the circumference of the cylinder. For both of these

properties, it is encouraging that the trend shifts towards the reference data as the cell sizes

in the computational domain drop. The impact of the the grid cell sizes and the grids used

to predict these values are explained in detail later.

4.2.2 Impact of Grid Adaption Parameters: Temperature

During the preliminary investigation, solution adaption was performed based on velocity

divergence and vorticity gradients in the computational domain. This strategy managed

to capture the shock and the boundary layer very well (away from the stagnation region).

In the stagnation region though, where there is a pocket of highly viscous slow moving
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Figure 35: Cf distribution: Mach 10, Re 1445
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Figure 36: q̇w distribution: Mach 10, Re 1445
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fluid, any combination of the vorticity and divergence gradient parameters failed to adapt

to the temperature gradients present there. Any reasonable prediction of convective heating

requires good resolution of the thermal boundary layer and the temperature gradients in the

stagnation region. The solution adaption strategy was appropriately modified to include the

gradients of temperature (and stagnation enthalpy) amongst the list of adaption parameters.

This improved the resolution of the thermal boundary layer, evidence of which is presented

in Figs. 37 and 38.

Here, the grid adapted using velocity divergence and vorticity gradients is presented on

top, and the grid that had temperature gradient inclusive adaption is presented below. The

results presented in the previous sections, therefore, included temperature gradients in the

list of adaption parameters.

4.2.3 Impact of Rewall

Prior studies have shown that the parameter Rewall (defined in Eq. 96) plays a critical role

in the accuracy of the predicted heating rates. Arslanbekov et al. [6] have shown using a

different unstructured Cartesian grid based solver (UFS) that for the same flow conditions

presented here, an Rewall of unity is required to match the predictions of both LeMANS and

MONACO. UFS uses a different set of wall boundary conditions (Maxwell’s slip conditions

[54]), and therefore the corresponding Rewall requirements for NASCART-GT’s no-slip im-

mersed boundary approach could very well be different. In fact, the results presented here

show that this solver is capable of reasonable levels of accuracy in predicting convecting

heating rates even with higher than unity Rewall values. For the Re∞ = 289 test case, the

surface properties shown in Figs. 23-25 compare the results using grids corresponding to 3

different Rewall values. The pressure, as seen before, is hardly affected by the variations in

the grid cell sizes, whereas the shear stress and convective heat flux predictions are more

sensitive to this parameter. Despite that, even for an Rewall of 4, only a marginal difference

in the skin friction and heating values are noticed (< 5%). Of course, as Rewall reaches

unity, the thermal boundary layer is perfectly resolved, and the resulting heating prediction

is the most accurate.
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Figure 37: Mach 10, Re 289 flow: solution adaption without and
with T gradients

Figure 38: Mach 10, Re 289 flow: solution adaption without and
with T gradients: close-up
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For the Re∞ = 1445 case, results using Rewall values that are an order of magnitude

higher were presented. This was largely because of the computational costs associated with

such simulations, which required excessive number of small grid cells to adequately resolve

the thermal boundary layer. By analyzing these coarse grid simulations, it also helps to

establish a trend regarding the accuracy of the predictions for larger Rewall values. Unlike

the Re∞ = 289 case, the Rewall values for the presented results ranged from 10-40. The

pressure continued to be largely unaffected even for such coarse grid simulations. Deviations

in the heating and skin friction predictions were more significant, given the magnitude of

the Rewall values; for the case with Rewall = 40, the Cf predictions were nearly 50% less

than the expected values.

In addition to the accuracy of these predictions, variations in properties along the surface

also differed for different grid setups. This aspect is analyzed next.

4.2.4 Impact of Surface Grid Width (XBL)

In the heating curves presented earlier, the theoretical cosine variation of the convective

heating along the wall for the cylinder is overlaid for reference. A comparison of the pre-

dictions by NASCART-GT and the reference results shows an interesting trend in the

estimation of the heating rates along the surface.

The Re∞ = 289 case compares very well with the reference curves throughout the surface

of the cylinder. For the Re∞ = 1445 case, deviations from the reference values are evident

to different extents for various Rewall values. For a more detailed insight into this, this case

was run using 3 different grid with the same Rewall value of 40. The differences in the grids

were in the width of the fine viscous grid cells used near the wall, and the extent to which

these were extended into the flow.

Figures 39-44 show the grids generated for this study, and the corresponding plots of the

temperature in the stagnation region. In the first setup (Figs. 39 and 40), the fine viscous

cells are set to extend to a distance of 0.001 m normal from the wall. For the second setup

(Figs. 41 and 42), this is increased to 0.005 m, and the third (Figs. 43 and 44 has this

extend to 0.01 m.
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With these settings, the extent to which these fine grid cells “dip” into the high temper-

ature bubble behind the shock wave differ. The first setup hardly has any cells that extend

into this high temperature region, whereas both the second and the third setups allow for

cells to “dip” into this region to various extents.

A plot of the corresponding heating predictions for this case using each of these grid

settings is shown in Fig. 45. There is a significant 20% spike in the peak heating rate

predicted using the first grid, compared to the other two grids. The latter two curves fall

right on top of each other.

It is postulated that the extent to which the fine band of viscous cells extends into the

high temperature region has a significant impact on the accuracy and the overall variation of

the surface heating predictions. In the former case, large portions of the high temperature

bubble are resolved by very coarse cells, and the fine band of cells that encompass the

geometry draw information from these grid cells. The unstructured nature of the Cartesian

grid framework requires interpolation of state properties to populate the flux integration

stencil in regions of varying refinement levels. Therefore, errors are propagated from the

coarse grid region to the surface, adversely affecting the heating predictions at the wall.

Having a wider band of viscous surface cells allows for these fine grid cells to make

more accurate interpolations. As seen from latter two setups, the extent to which these

cells extend into the high temperature region does not have any impact on the surface

predictions, so long as they have a significant number of cells that resolve this region.

4.3 Stagnation Point Heating Prediction Comparisons

In order to confirm NASCART-GT’s prediction of convective heating rates over a range of

hypersonic Mach numbers, test cases were set up for an axisymmetric hemisphere geometry.

The computed stagnation point heat rates were compared with experimental results and

empirical relations.

Yee et al. [107] conducted a series of ballistic range measurements of stagnation point

heating in air and carbon dioxide for hypersonic velocities up to 18,000 ft/s (5.4864 km/s).

The flow conditions for these experiments were at an ambient temperature of 540◦ R (300
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Figure 39: Mach 10, Re 1445 flow: XBL = 0.01 m - overlay

Figure 40: Mach 10, Re 1445 flow: XBL = 0.01 m - separate
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Figure 41: Mach 10, Re 1445 flow: XBL = 0.05 m - overlay

Figure 42: Mach 10, Re 1445 flow: XBL = 0.05 m - separate
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Figure 43: Mach 10, Re 1445 flow: XBL = 0.1 m - overlay

Figure 44: Mach 10, Re 1445 flow: XBL = 0.1 m - separate
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Figure 45: Mach 10, Re 1445 flow: Comparisons of XBL settings

K) and a pressure of 10132.5 Pa (1/10th of standard atmosphere). A spherical-nosed model

(radius 0.11”, 0.00274 m) was launched from a light-gas gun, and the ballistic range was

instrumented with spark shadowgraphs and electronic chronographs, as well as pickup coils

for measurements.

Comparisons were made with estimates using empirical relations in that reference. Fay

and Riddell [26] developed the theory of stagnation point heating in their seminal paper by

deriving the boundary layer equations for high speed external dissociated flow. The local

heat transfer rate was determined by the sum of the conductive and diffusive terms, and

was theoretically derived to be:

q̇ =
(

Nu/
√
Re
)
√

ρwµw (due/dx)s [(hs − hw) /Pr] (97)

where, Nu, Re and Pr are the local Nusselt, Reynolds and Prandtl numbers. Subscript w

refers to the wall conditions, and s denotes the stagnation point values. Based on empirical

relations, this equation (Eq. 97) reduces to:

q̇s = 0.94 (ρwµw)
0.1 (ρsµs)

0.4 {1 +
(

L0.52 − 1
)

(hD/hs)
}

(hs − hw)
√

(due/dx)s (98)
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Table 5: Stagnation point heating freestream velocities

V∞ (kft/s) M∞

10 8.778

12 10.534

14 12.29
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Figure 46: q̇w stagnation point: hemisphere

NASCART-GT was setup to compute a series of these test conditions for a similar hemi-

spherical geometry (axisymmetric test case). The density in the freestream was computed

to be 0.1177 kg/m3 and the velocities for these tests are listed in Table 5:

Figure 46 shows the comparison of the stagnation point heating predicted by NASCART-

GT with the experimental and empirical results from Ref. [107].

These cases where run using the LU-SSOR implicit time integration scheme, with CFL

numbers ramped from 0.1 to 100. As evident from Fig. 46, NASCART-GT under-predicts

the stagnation point heating when compared to the experimental and empirical results.

This is attributed to the coarse grids that were used for this series of test cases, and varies
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for different Rewall setups. For example, the M∞ = 8.778 case shows a 15% under-prediction

of the stagnation point heating, whereas the M∞ = 10.534 shows an improved 5% under-

prediction. The overall trend in the stagnation point convective heating rates compares

reasonable well with the references.
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CHAPTER V

FROZEN FLOW RESULTS - II

5.1 Frozen Flow Surface Prediction Comparisons - Complex Flows

One advantage in using an unstructured grid solver is its ability to adapt the grid based

on the gradients in the computational domain as the solution develops. With this, regions

with strong shock waves and vorticular structures can be well defined with a large number

of grid points and very small cells, ensuring sharper resolution of such phenomena.

Following the 2-D cylinder simulations, an axisymmetric case that involves complicated

flow physics was chosen. The adaptive mesh refinement strategy of NASCART-GT was

evaluated for computing complex hypersonic flows. This case has a compression corner

which results in the interaction of a hypersonic shock wave and boundary layer. As a

results, the boundary layer separates generating a circulation bubble. The solution adaption

capability in the solver is naturally catered to capturing such phenomena well.

The freestream Reynolds number for this case was higher than those used in the cylin-

der test cases (Re∞ ≈ 213, 000 for the hollow cylinder-flare geometry), which demanded

extremely small cells in the boundary layer to reach an Rewall of unity. Considering the

cost of such cell-intensive computations, this investigation is being treated as a demonstra-

tive study to evaluate the immersed boundary ghost cell approach in predicting surface

physics in the presence of a separation bubble. As a means of keeping the cell count within

reasonable limits, relatively coarser grids were used to compute this flow.

This case involves hypersonic nitrogen gas flow. Assuming the gas to be frozen, Suther-

land’s equation was used to determine the transport properties (C1 = 1.401×10−6, C2 = 107

K). The ratio of the specific heats (γ) was taken to 1.4, and the Prandtl number was set at

0.73439.
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Figure 47: Schematic of the hollow cylinder flare geometry

5.1.1 Hollow Cylinder Flare in Mach 12.4 Nitrogen Flow

Hypersonic flow over a hollow cylinder flare (CUBRC Run 11 of the benchmark cases

developed by the NATO Research Technology Organization [39, 43, 38]) was the complex

flow test case considered. This axisymmetric model consists of a hollow cylinder followed

by a surface sloped at 30◦ (Fig. 47). The two surfaces result in a boundary layer which

separates at the surface junction due to the flow turning and the shock wave generated by

the flare. The complexity of the flow physics of the hypersonic shock wave-boundary layer

interaction and the prediction of the heat transfer in such a region make this a difficult but

realistic validation test case. This configuration has been extensively studied numerically

[63, 89], and experimental measurements have provided reference surface pressure, surface

heat transfer and Schlieren photographs. The resulting shock intersects the flare, producing

a spot of high density, pressure and heat transfer. The freestream flow conditions for the

CUBRC Run 11 are given in Table 6.

Preliminary analysis of this case showed a separation bubble that was very sensitive to

the temperature clipping strategy used in the immersed boundary ghost cell methodology.

Therefore, 2 settings for this strategy were analyzed, where the ghost cell temperatures were

not allowed to fall below 1/2 and 1/4 of the reference point value.

Each of these cases was run using the implicit LU-SSOR scheme with the CFL number

ramped from 0.1 to 10,000. Initially, solution adaption of the flow cells was carried out
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Figure 48: Original surface of the hollow cylinder flare geometry

Table 6: CUBRC Run 11 test conditions

Freestream parameter Value

M∞ 12.4

V∞ 2471.4 m/s

ρ∞ 5.566× 10−4 kg/m3

T∞ 95.6 K

Twall 297.2 K
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based on velocity divergence and gradients of the stagnation enthalpy. Further, adaption of

the surface cells was turned on and the simulations were continued for 3 additional cycles of

refinement, which reduced the minimum cell size in the computational domain by an order

of magnitude. Thus, Rewall for this case dropped from a peak value of ≈ 500 to 55. The

coarse and fine converged grids for both temperature clipping strategies are shown in Figs.

49-52.

These axisymmetric simulations resulted in approximately 55,000 cells for the coarse

grid and 1.35 million cells for the fine grid setups, with the smallest cell sizes being of the

order of 10−4 and 10−5 m, respectively. It should be noted here that a viscous-band of

cells along the surface was exempted from coarsening, to make sure that the boundary layer

was resolved adequately. The width of this viscous band was set to the theoretical Blasius

boundary layer thickness.

The results of the simulations are presented in the form of contour plots of the Mach

number (Figs. 53-56), pressure (Figs. 57-60) and temperature (Figs. 61-64) in the computa-

tional domain. Two sets of results each for both temperature clipping strategies are shown,

converged for both the coarse and finer grid simulations.

The most striking observation from each of these plots is that the location of the shock

wave-boundary layer interaction is consistent with both temperature settings, and for both

coarse and finer grids. This compares very well with experimental observations, where the

point of interaction lies approximately 0.14 m along the X-axis (Fig. 47).

The size and the location of the separation bubble also compares well qualitatively with

experiments, and is consistently predicted in each case. Given the unsteady nature of this

setup, it was observed that when solution adaption was performed at a lower frequency,

the prediction of the location of the shock wave-boundary layer interaction and the size of

the separation bubble compared poorly with experiment. The unsteady nature of this test

case prevented the residuals from continuing to drop, setting the residual history up for a

limit cycle. Frequent adaptive refinement is therefore essential in capturing the complex

flow phenomena in simulations such as this, especially when using reasonably large CFL

numbers in the implicit time integration scheme. For this case, adaption was performed
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Figure 49: CUBRC Run 11: coarse grid [Tghost ≥ 0.5Treference]

Figure 50: CUBRC Run 11: finer grid [Tghost ≥ 0.5Treference]
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Figure 51: CUBRC Run 11: coarse grid [Tghost ≥ 0.25Treference]

Figure 52: CUBRC Run 11: finer grid [Tghost ≥ 0.25Treference]
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Figure 53: CUBRC Run 11: Mach contours, coarse [Tghost ≥
0.5Treference]

Figure 54: CUBRC Run 11: Mach contours, finer [Tghost ≥
0.5Treference]
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Figure 55: CUBRC Run 11: Mach contours, coarse [Tghost ≥
0.25Treference]

Figure 56: CUBRC Run 11: Mach contours, finer [Tghost ≥
0.25Treference]
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Figure 57: CUBRC Run 11: pressure contours, coarse [Tghost ≥
0.5Treference]

Figure 58: CUBRC Run 11: pressure contours, finer [Tghost ≥
0.5Treference]
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Figure 59: CUBRC Run 11: pressure contours, coarse [Tghost ≥
0.25Treference]

Figure 60: CUBRC Run 11: pressure contours, finer [Tghost ≥
0.25Treference]
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Figure 61: CUBRC Run 11: temperature contours, coarse [Tghost ≥
0.5Treference]

Figure 62: CUBRC Run 11: temperature contours, finer [Tghost ≥
0.5Treference]
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Figure 63: CUBRC Run 11: temperature contours, coarse [Tghost ≥
0.25Treference]

Figure 64: CUBRC Run 11: temperature contours, finer [Tghost ≥
0.25Treference]
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every 1000 iterations for a total of 25,000 iterations.

The predicted variations of the surface pressure coefficient for both simulation are shown

in Figs. 65 and 66. Experimental results are overlaid on these plots for comparing the trends,

magnitudes and the locations of the peak pressures.

NASCART-GT shows reasonable agreement for the magnitude of the peak pressure

along the surface, which occurs at the point of the shock wave-boundary layer interaction.

Both temperature clipping strategies over-predict the peak value by about 10%, though

the major features of the pressure variation along the surface are captured well. The

adaptive mesh refinement strategy that includes the surface cells shows the right trend as

the cell sizes become smaller. The downstream pressure is somewhat over-predicted by the

Cartesian grid solver. Prior studies have shown that this magnitude is very sensitive to the

numerical scheme used to compute the flow, and the extent of dissipation in the scheme.

It should be re-emphasized here that the Rewall associated with the coarse grids is

significantly large ≈ 60, but similar to the cylinder cases previously shown, prediction

of the variation in pressure along the surface does not require very small surface cells.

Overall, reasonable agreement with the experimental data is seen here, with very good

comparison of the location of the peak Cp. The more lenient temperature clipping strategy

(Tghost ≥ 0.25× Treference) makes marginally better estimates of the peak surface pressure.

The convective heat transfer rate variations along the surface of the hollow cylinder flare

for these simulations are shown in Figs. 67 and 68. Unlike the Cp variations, the comparison

of heating rates fares much worse for both temperature clipping strategies, with the setup

that allows for lower surface temperatures significantly under-predicting the peak convective

heat transfer rate (by ≈ 50%). The impact of the high Rewall values is felt more here than

the pressure curves, similar to the cylinder cases. It is once again encouraging that as

the cell sizes decrease, the magnitude of the peak heating rates do indeed march towards

the experimental value, to a more significant extent for the stricter temperature clipping

strategy (Tghost ≥ 0.5× Treference).

The separation location, as seen in the pressure curves, is marginally shifted to the right

of the experimental values, but the overall location of the peak convective heating rate
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Figure 65: Cp distribution (CUBRC Run 11): [Tghost ≥
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Figure 67: q̇w distribution (CUBRC Run 11): [Tghost ≥
0.5Treference]
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compares very well with experiments.

5.2 Inferences: Frozen Simulations

The take-away from this study is that the strategy used to improve the surface predictions

of the heat transfer rate and the pressure coefficients has to be specific for each test case

analyzed. In this case, as well as the cylinder cases presented in the previous chapter, the

immersed boundary method has been shown to be capable of predicting reasonable con-

vective heating trends even with significantly coarse grids (high Rewall). Also, the clipping

strategy that allows for a stricter lower ghost cell temperature limit results in a more sta-

ble solution that leads to a smoother variation of the surface properties, compared to the

setting that allows for a lower ghost cell temperature.

Even though the stricter clipping strategy (Tghost ≥ 0.5×Treference) seems to improve the

heating predictions with finer grids, adequate care must be taken to make sure that this does

not result in a non-physical representation of the surface temperature. The temperature

perceived by the fluid at the boundary is altered in this methodology, and the isothermal

wall temperature that is initially set is overridden with the clipped value. Though this

strategy lends a certain level of stability to the simulation, it should be noted that the heat

transfer rate predicted at the wall would be based on the clipped temperature. Of course,

as the surface cells start to refine, the impact of the clipping strategy wanes. Ideally, surface

cells should be refined until the temperatures at the ghost cells do not get clipped anywhere

at the surface, yielding the most accurate representation of the isothermal surface temper-

ature. Unfortunately, the computational costs associated with successive refinements can

be significant. Therefore, it is important to balance the two in deciding upon a simulation

strategy. A dynamic adaption strategy mixed with a more robust temperature clipping

setting is generally required for good predictions of hypersonic viscous flows.
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CHAPTER VI

REACTING FLOW RESULTS

Finally, test cases were setup to evaluate the immersed boundary ghost cell methodology

for predicting hypersonic convective heat transfer rates in a reacting environment. These

tests serve as preliminary investigations to evaluate the strengths and weaknesses of the

immersed boundary ghost cell approach for such a setup.

6.1 Reacting Flow Adiabatic Wall Predictions

6.1.1 Cylinder in Mach 12.7 Air Flow

The off-surface flow physics prediction capability of the Cartesian grid framework in a

chemically reacting thermal nonequilibrium environment was first verified using an adiabatic

wall boundary condition. A Mach 12.7 air flow test case past a cylinder of radius 0.1 m was

considered with the freestream conditions listed in Table 7. In this reacting environment,

Re∞ per unit length was computed to be 355,000 (based on 79% N2, 21% O2 at T∞ 195.96

K). Lee [51] used this test case to evaluate the inviscid thermochemical nonequilibrium

capability of the solver. This case has been extended to include viscous effects. Comparisons

of the flow predictions were made with the solutions from DPLR. The grids used in both

solvers are shown in Figs. 69 and 70.

The inviscid fluxes were computed using the AUSMPW+ scheme, and were set to first

Table 7: Cylinder in Mach 12.7 air flow test conditions

Freestream parameter Value

M∞ 12.7

ρ∞ 1.6× 10−3 kg/m3

P∞ 90 Pa

Re∞ 355,000 /m
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Figure 69: Cylinder in Mach 12.7 air, adiabatic wall: NASCART-GT
grid

Figure 70: Cylinder in Mach 12.7 air, adiabatic wall: DPLR grid

98



www.manaraa.com

order accuracy throughout for stability purposes. NASCART-GT automatically sets the

order of accuracy of the inviscid fluxes in regions of sharp gradients to first order by use

of the flux limiter. Commencing the simulation with a higher order of accuracy led to

instabilities in the progression of the solution, as well as fluctuations in the shock region

where adjacent cells would compute inviscid fluxes to different orders of accuracy.

This case was run in parallel on 8 cores. The final converged grid had a total of 96,000

cells with the smallest cell size being of the order of 10−4 m. Solution adaptation was

carried out at regular intervals (every 500 iterations) to ensure that the sharp gradients

computed were sufficiently resolved. Gradients of the velocity divergence and the species

concentrations were used for the refinement routine for this case. The threshold values

for unrefinement based on velocity divergence gradients was set to 30% and for species

concentration gradients, it was set to 50% of the average. For refinement, the threshold for

both velocity divergence and species concentration gradients were set to the overall average

of the respective parameters in the computational domain. The highly refined post-shock

region is evidence of the refinement based on concentration gradients, where temperatures

of the order of 6000 K result in the chemically reacting air mixture. The air chemistry model

was composed of 5-species and 17-reactions, and the forward reaction rates were identical

to those used in Ref. [51]. Further, a CFL number-ramping technique was followed to

ensure smooth progression of the solution, considering that the chemistry associated with

hypersonic flows generally amounts to a stiff problem. The resulting variations in the

Mach number, pressure, translational-rotational temperature and vibrational temperature

are compared in the form of contours plots with DPLR. These are shown in Figs. 71-78.

The variations in the Mach number and pressure match very well with the results from

DPLR, with almost identical contours levels through the computational domain. The shock

wave shape and the stand-off distance (0.03 m) also agrees with the body-fitted solver. The

marginal variations in the contours near the 90◦ circumferential angle are attributed to the

coarseness of the Cartesian grid in this region. The overall variations of the temperatures

also match for this test case, with the vibrational temperature contours differing in thickness

in the stagnation region.
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Figure 71: Cylinder in Mach 12.7 air, adiabatic wall: NASCART-GT
Mach contours

Figure 72: Cylinder in Mach 12.7 air, adiabatic wall: DPLR Mach
contours
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Figure 73: Cylinder in Mach 12.7 air, adiabatic wall: NASCART-GT
pressure contours

Figure 74: Cylinder in Mach 12.7 air, adiabatic wall: DPLR pressure
contours
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Figure 75: Cylinder in Mach 12.7 air, adiabatic wall: NASCART-GT
Ttr contours

Figure 76: Cylinder in Mach 12.7 air, adiabatic wall: DPLR Ttr

contours
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Figure 77: Cylinder in Mach 12.7 air, adiabatic wall: NASCART-GT
Tv contours

Figure 78: Cylinder in Mach 12.7 air, adiabatic wall: DPLR Tv

contours
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Figure 79: Cylinder in Mach 12.7 air, adiabatic wall: Stagnation line temperatures
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Table 8: Cylinder in Mach 12.7 air flow test conditions

Freestream parameter Value

M∞ 12.7

ρ∞ 1.6× 10−3 kg/m3

P∞ 90 Pa

Twall 500 K

Re∞ 355,000 /m

Figures 79 and 80 show the variations of the temperatures and the species mole frac-

tions along the stagnation line for this reacting flow test case. The peak translational-

rotational temperature from both the solvers is in the vicinity of 6000 K, and the vibra-

tional peak temperature is approximately 4800 K for NASCART-GT, whereas it is around

5000 K for DPLR. This discrepancy is attributed to the difference in the representation

of the internal energy modes in each solver. NASCART-GT considers the translational

and rotational modes, and the vibrational and electronic modes to be in equilibrium with

each other, whereas DPLR assumes a single temperature for the translational-rotational-

electronic modes, and a separate temperature for the vibrational mode. Variations of the

species mole-fractions along the stagnation line also compare very well (Fig. 80).

6.2 Reacting Flow Isothermal Wall Predictions

6.2.1 Cylinder in Mach 12.7 Air Flow

Having shown excellent prediction capability of the off-surface flow physics for hypersonic

chemically reacting flows, the ability to make surface physics predictions was next inves-

tigated for an isothermal wall boundary condition. A similar Mach 12.7 air flow test case

past a cylinder of radius 0.1 m was considered with the freestream conditions listed in Table

8. This reacting environment had the same Re∞ per unit length of 355,000 (based on 79%

N2, 21% O2 at T∞ 195.96 K). Comparisons of the flow predictions were once again made

with the solutions from DPLR. The grids used in both solvers are shown in Figs. 81 and

82.
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Figure 81: Cylinder in Mach 12.7 air, isothermal wall: NASCART-
GT grid

Figure 82: Cylinder in Mach 12.7 air, isothermal wall: DPLR grid
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AUSMPW+ scheme was used to compute the inviscid fluxes to second order accuracy.

This case was also run in parallel on 8 cores. The final coarse converged grid had a total

of 18,000 cells with the smallest cell size being of the order of 10−4 m. Gradients of the

velocity divergence, species concentrations and temperature were used for the refinement

routine for this case. The air chemistry model was composed of 5-species and 17-reactions,

and the forward reaction rates were used Park’s 1993 model. The resulting variations in the

Mach number, pressure, translational-rotational temperature and vibrational temperature

are compared in the form of contours plots with DPLR. These are shown in Figs. 83-90.

Variations in the Mach number and pressure match well with the results from DPLR,

with almost identical contours levels through the domain. The shock wave shape agrees

well with the body-fitted solver, but the shock stand-off distance is over-predicted by ap-

proximately 15%. The overall variations of the temperatures also match well for this test

case. For example, the peak translation-rotational temperature from both solvers is around

5500 K. However, the smallest grid cell size used in the Cartesian grid solver was 2 orders of

magnitude larger than that body-fitted grid solver (10−4 m vs 10−6 m). The corresponding

wall Reynolds number (Rewall) computed was around 4,000. This is significantly larger than

the prescribed value of O(1). Therefore, the thermal boundary layer was poorly resolved,

which lead to a significant under-prediction of the stagnation point heating rate (7.3× 104

W/m2 vs 6.3 × 105 W/m2). Finer meshes are definitely required to make good heating

predictions with a well resolved thermal boundary layer.

Overall, the immersed boundary method in the unstructured Cartesian grid framework

has been shown to compute viscous chemically reacting hypersonic flows. However, for

reasonable accuracy, the grid cell spacing in the normal direction must be similar to the

requirements for body-fitted grids. Since the Cartesian formulation uses cell aspect ratios of

unity (unlike body-fitted grids), achieving grid densities suitable for adequate heat transfer

for high Reynolds number problems such as this case make the pure Cartesian formulation

less attractive.
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Figure 83: Cylinder in Mach 12.7 air, isothermal wall: NASCART-
GT Mach contours

Figure 84: Cylinder in Mach 12.7 air, isothermal wall: DPLR Mach
contours
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Figure 85: Cylinder in Mach 12.7 air, isothermal wall: NASCART-
GT pressure contours

Figure 86: Cylinder in Mach 12.7 air, isothermal wall: DPLR pres-
sure contours
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Figure 87: Cylinder in Mach 12.7 air, isothermal wall: NASCART-
GT Ttr contours

Figure 88: Cylinder in Mach 12.7 air, isothermal wall: DPLR Ttr

contours
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Figure 89: Cylinder in Mach 12.7 air, isothermal wall: NASCART-
GT Tv contours

Figure 90: Cylinder in Mach 12.7 air, isothermal wall: DPLR Tv

contours
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

This research study has advanced and demonstrated the ability of the unstructured Carte-

sian grid based formulations to model hypersonic viscous flows. A solution adaptive solver

that utilizes the immersed boundary ghost cell approach was used as the base, and vari-

ous aspects of this Cartesian grid framework were parameterized for good flow prediction

capability. These include the grid cell size, which has been defined based on the Rewall mag-

nitudes. The appropriate levels of this parameter for adequate heating predictions has been

quantified. The criteria used in the adaptive mesh refinement process were extended to in-

cluded appropriate parameters for good heating predictions. The impact of a viscous-band

of surface cells on the quality of the predictions was also demonstrated.

Additionally, thermochemical nonequilibrium capability was integrated to the immersed

boundary Cartesian framework, allowing for the computation of hypersonic, reacting flows.

The strengths and shortcomings of this technique in predicting off-surface and surface flow

properties have been recorded, and this first-of-a-kind implementation extends the state-

of-the-art in unstructured Cartesian grid techniques, laying the groundwork for further

research in this field. The specific outcomes of the research effort are detailed below.

Comparisons of the variations of surface pressure, shear stress and convective heat flux

predicted for a Mach 10 flow of argon past a 12” cylinder for a set of Reynolds numbers were

made with results from a DSMC code (MONACO) and a body-fitted grid CFD simulation

(LeMANS). The overall trends in all the parameters compared well, and the accuracy of the

predictions were evaluated at various grid refinement levels. The sensitivity of the accuracy

of these predictions to Rewall was documented for this series of test cases. The pressure

coefficient variation along the surface was largely unaffected by the relative coarseness of

the grid cells in the preliminary test runs, and compared well with the results from the
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reference for all Rewall values. The skin friction coefficient and the convective heat transfer

rate were more sensitive to the size of the surface cells in each case. Rewall magnitudes

of O(1) showed very good agreement with the reference distributions, whereas cell sizes of

O(10) fared much worse in comparison. The magnitude of the peak heating was reasonably

predicted in each case, whereas for coarse grids the trends of the shear stress and the heat

flux across the surface showed significant deviations from the reference values. Further,

a correlation between the conformity of the surface property variations to the references

values and the grids used in these simulations was made. The extent to which the band of

viscous grid cells spread into the high temperature bubble in the stagnation region tended to

have a significant impact on the accuracy and the trend of the properties along the surface.

The noise associated with the skin friction and convective heating curves is attributed

to the variations in the orientation and location of the surface panels along the body, which

results in a non-uniform distribution of the ghost cell center distances from the surface

panels. Additionally, the reference point locations with respect to 3 closest surrounding cell

centers also affected the interpolated values there, further increasing the noise associated

with these distributions.

To demonstrate the advantages of the unstructured Cartesian grids in adapting them-

selves to capture complex flow physics, a hypersonic test case that involved interactions

between a shock wave and a boundary layer, and a separation bubble was computed. Com-

parisons of the surface pressure coefficient and the heating rates for an axisymmetric hollow

cylinder-flare configuration was made with experimental results, and the effects of the tem-

perature clipping strategy used in the immersed boundary ghost cell approach was analyzed

for 2 different clipping limits. Overall, the formulation made good predictions of the major

flow features with very good agreement in the locations of the shock wave/boundary layer

interaction and the re-circulation bubble. Also, given the high freestream Reynolds num-

bers and taking into account the costs of such simulations (with excessive number of cells),

only reasonably coarse grids were tested in this research effort. Despite this restriction, the

overall trend of the surface property predictions agreed well with the experimental results,

and showed significant improvement in the heating predictions with successively refined
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grids. Additionally, the clipping strategy that restricted the ghost cell temperatures from

falling below 1/2 the reference cell temperatures made much better predictions compared to

the setup that allowed the minimum ghost cell temperature to 1/4 the reference cell value.

Further, to confirm the immersed boundary method’s convective heating prediction

capability, a range of freestream Mach numbers were chosen and the overall trend of the

stagnation point heating was compared with results from a ballistic range experimental

setup and tried-and-tested empirical relations for an axisymmetric hemisphere.

Finally, the existing inviscid thermochemical nonequilibrium solver in NASCART-GT

was extended to compute viscous flows by installing diffusion terms in the species and

energy conservation equations. Collision cross-section based transport coefficients were also

included to compute viscosity, thermal conductivity and the species diffusion coefficients.

Appropriate modifications were made to the immersed boundary ghost cell approach for a

reacting environment.

The unstructured Cartesian grid framework was first tested for an adiabatic wall bound-

ary condition to evaluate its ability to make good estimates of the off-surface flow properties.

A 2-D cylinder test case for hypersonic reacting air flow was computed, and the results were

compared with those from a body-fitted grid solver (DPLR). Very good agreement of the

flow properties in the computational domain were seen, with identical shock wave stand-off

distances predicted by both solvers. The temperatures and species mole-fractions variations

along the stagnation line also compared very well for this test case.

Next, a similar 2-D cylinder test case for hypersonic reacting flow was computed us-

ing an isothermal wall boundary condition to evaluate the surface properties prediction

capability of the immersed boundary method. Comparisons of the results were once again

made with results from DPLR. The grid cells used in this analysis were coarse due to the

associated computational costs. Even with such a grid, the shock stand-off distance, the

peak temperatures in the computational domain and the shock shape compared reasonably

well with the reference. The stagnation point heating rate in this thermochemical nonequi-

librium environment was significantly under-predicted by the solver when compared to the

reference value. The combination of a higher order flux-integration scheme with finer grid
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cells should allow for better agreement with experiment.

Based on the results of this research study, it was found that to make accurate predictions

of convective heating using the immersed boundary method, cell sizes that correspond to a

Rewall of O(1) are required. This results in a very large number of cells in the computational

domain even for 2-D cases, increasing the cost of such test runs. For higher freestream

Reynolds numbers, this number gets even higher, and could become prohibitively large for

3-D geometries.

7.2 Recommendations

Considering that this is the first such research study into the prediction capability of the

immersed boundary ghost cell methodology in an unstructured Cartesian framework for vis-

cous thermochemical nonequilibrium flows, a number of strengths and shortcomings of the

formulation were observed. For instance, the prediction of the pressure distribution along

the surface of the geometry could be made with coarse grid cells, whereas the skin friction

and heating rates required much finer cells to make accurate predictions. Additionally, the

unstructured Cartesian framework makes very good predictions of the off-surface proper-

ties even in a thermochemical nonequilibrium environment. Based on these observations, a

series of recommendations are made to improve the accuracy and smoothness of the surface

properties, keeping in mind the cost associated with these simulations.

Alternative gridding strategies

With the stringent Rewall requirement for accurate heating predictions for hypersonic

flows, the use of the immersed boundary ghost cell approach in the unstructured

Cartesian methodology has been shown to require a very large number of cells to make

good predictions of surface properties. Given the cost of such simulations, the practi-

cal application of this technique in a high Reynolds number reacting flow environment

using the current framework requires significant modifications. Alternative discretiza-

tion strategies must be investigated. The combination of a body-fitted mesh at the

surface and an unstructured Cartesian mesh in the far-stream is one such strategy.

This will alleviate the need for a prohibitively large number of Cartesian unstructured
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grid cells at the surface, and still allow for the accurate capture of the off-surface flow

physics with the adaptive mesh refinement capability. Additional strategies, such as

the normal ray refinement technique [82], could also be used in reducing the number

of surface cells, thereby the costs of such computations.

Immersed boundary ghost cell - temperature BC

Preliminary analyses of various temperature boundary conditions were carried out at

the beginning of this investigation, and the most stable from a series of implementa-

tions was chosen for the presented results. Further research into other temperature

boundary conditions could relax the stringent Rewall restriction that this implemen-

tation imposes. For example, a setup where the ghost cell temperature is split into

viscous and inviscid components was tested, and showed reasonably accurate predic-

tions of the heating rates even for coarser surface cells. Here, the inviscid flux terms

used an adiabatic wall temperature boundary condition (Tghost = Treference), whereas

the viscous flux terms used an unclipped ghost cell center temperature. Since the vis-

cous flux calculations only require temperature gradients at the cell faces, this viscous

temperature was allowed to take even negative values, ensuring the correct gradient at

the wall. Though the magnitude of the stagnation point heating was computed well,

this strategy was not considered in this study because the variation of the convective

heating rate along the surface of the geometry was found to be very noisy. Such

an alternative implementation of the temperature setting in the immersed boundary

method could very well be used to reduce the number of surface cells, allowing for less

expensive simulations.

Parallel setup, finer grid simulations

To further improve the simulation cost for such computationally intensive test cases,

it is critical to have a parallelized solver that allows for very efficient scalability. Even

though NASCART-GT is capable of parallel test runs, the efficiency of its parallel

implementation must be investigated.
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Unify implicit formulation

Currently, NASCART-GT separates the LU-SSOR scheme that integrates the initial

five terms of the state vector from the chemistry terms, which are computed using

the point-implicit solver. Further investigation into the efficiency of such a setup

is required, and the chemistry terms of the Jacobian formulation of the LU-SSOR

scheme must be installed.

Thermo-chemistry implementation

The thermal nonequilibrium model in NASCART-GT allows for the presence of 2

separate temperatures in the flow. This should be extended to allow for multiple

vibrational temperature, as well as ionization. Of course, appropriate empirical curve

fits must also be included in the available database. Additionally, wall boundary

conditions that allow for various levels of catalycity must be included.
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APPENDIX A

CONSERVATION EQUATIONS: VECTOR FORM

The conservation equations presented Chapter 2 are organized in the form of an equation

of vectors to distinguish the inviscid and viscous terms, as well as the source terms. In

Chapter 3, the flux terms along the Cartesian X- direction alone were presented. For the

sake of completeness, the terms along all three dimensions are presented here.

Once again, the vector form of the governing equations are:

∂U

∂t
+

∂ (F− Fv)

∂x
+

∂ (G−Gv)

∂y
+

∂ (H−Hv)

∂z
= S (99)

U is the vector of conserved state variables, F, G and H are the inviscid flux vectors

along the Cartesian X-, Y- and Z- directions respectively, Fv, Gv and Hv are their viscous

counterparts, and S is the vector of source terms due to chemical reactions. Each of these

vectors can be expanded as:

U =


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






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
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
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




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










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ρeV


















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








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


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




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


























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


















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0

0
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


















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


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








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(100)

The flux vectors are expanded as
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F =























































ρu

ρu2 + p

ρvu

ρwu

ρ (e+ p)u

ρ1u

...

ρNsu

ρeV u























































Fv =


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
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∑
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∑
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APPENDIX B

NON-DIMENSIONALIZED EQUATIONS

NASCART-GT computes the Navier-Stokes equations in their non-dimensional form. In

light of the viscous diffusion terms being added to the energy and species density equations,

the non-dimensionalization of the entire set of equations is revisited here. This follows the

factorization presented in Ref. [92].

The nomenclature used here is the same as in Chapter 2 of this thesis. Terms with

superscript “∗” denote non-dimensional terms, and subscript “∞” represents freestream

conditions.

From Ref. [92], the primitive variables are non-dimensionalized as:

x∗i =
xi

L
u∗i =

ui

V∞
t∗ =

t

L/V∞
(102)

ρ∗ =
ρ

ρ∞
T ∗ =

T

T∞
p∗ =

p

ρ∞V 2
∞

(103)

e∗ =
e

V 2
∞

h∗ =
h

V 2
∞

µ∗ =
µ

µ∞
(104)

The non-dimensionalization setup shown above is for the basic Navier-Stokes equations.

For flows in thermochemical nonequilibrium, additional diffusion terms due to chemical re-

actions and multi-temperature environments require the extension of these to accommodate

for more complex physics and chemistry terms. Since the non-dimensionalization factors

for thermal conductivities (Ktr and Kv) and the species diffusion coefficients (Ds) are not

explicitly given in the reference, these (KND and DND) are derived in terms of the remain-

ing freestream values here. Thus, the equations presented in Chapter 2 can be rewritten in

terms of the non-dimensional and freestream terms as:
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∂ρ∗

∂t∗

{

ρ∞
L/V∞

}

+
∂

∂x∗i
ρ∗u∗i

{

1

L
ρ∞V∞

}

= 0 (105)

∂

∂t∗
ρ∗u∗j

{

1

L/V∞
ρ∞V∞

}

+
∂

∂x∗i
ρ∗u∗ju∗i

{

1

L
ρ∞V 2

∞

}

+
∂p∗

∂x∗j

{

ρ∞V 2
∞

L

}

=

∂

∂x∗i

[

µ∗

(

∂u∗j

∂x∗i
+

∂u∗i

∂x∗j

)

−
2

3
µ∗∂u

∗k

∂x∗k
δij
]{

1

L
µ∞

V∞

L

}

(106)

∂

∂t∗
ρ∗e∗

{

1

L/V∞
ρ∞V 2

∞

}

+
∂

∂x∗i
ρ∗
(

e∗ +
p∗

ρ∗

)

u∗i
{

1

L
ρ∞V 2

∞V∞

}

=

∂

∂x∗i

(

K∗
tr
∂T ∗

tr

∂x∗i
+K∗

v
∂T ∗

v

∂x∗i

){

1

L
KND

T∞

L

}

+

∂

∂x∗i

(

ρ∗
∑

h∗sD
∗
s
∂χs

∂x∗i

){

1

L
ρ∞V 2

∞DND
1

L

}

+

∂

∂x∗i

[

u∗jµ∗

(

∂u∗j

∂x∗i
+

∂u∗i

∂x∗j

)

− u∗j
2

3
µ∗∂u

∗k

∂x∗k
δij
]{

1

L
V∞µ∞

V∞

L

}

(107)

∂ρ∗s
∂t∗

{

ρ∞
L/V∞

}

+
∂

∂x∗i
ρ∗su

∗i

{

1

L
ρ∞V∞

}

=
∂

∂x∗i

(

ρ∗D∗
s
∂χs

∂x∗i

){

1

L
ρ∞DND

1

L

}

+{ω̇s}∗ (108)

∂

∂t∗
ρe∗v

{

1

L/V∞
ρ∞V 2

∞

}

+
∂

∂x∗i
ρ∗e∗vu

∗i

{

1

L
ρ∞V 2

∞V∞

}

=
∂

∂x∗i

(

K∗
v
∂T ∗

v

∂x∗i

){

1

L
KND

T∞

L

}

+

∂

∂x∗i

(

ρ∗
∑

h∗v,sD
∗
s
∂χs

∂x∗i

){

1

L
ρ∞V 2

∞DND
1

L

}

+

∑

{

ρs
e∗v,s − ev,s

〈τs〉

}∗

+
∑

{ω̇sêv,s}∗ (109)

In the above equations, χs represents the species mole fractions, which are non-dimensional.

The source terms in the equations are separately handled in the point-implicit solver, and

their non-dimensionalization is not been included here.

After rearranging and combining the factors on each side, these equations look like:

{

ρ∞V∞

L

}{

∂ρ∗

∂t∗
+

∂

∂x∗i
ρ∗u∗i

}

= 0 (110)
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{

ρ∞V 2
∞

L

}{

∂

∂t∗
ρ∗u∗j +

∂

∂x∗i
ρ∗u∗ju∗i +

∂p∗

∂x∗j

}

=

{

∂

∂x∗i

[

µ∗

(

∂u∗j

∂x∗i
+

∂u∗i

∂x∗j

)

−
2

3
µ∗∂u

∗k

∂x∗k
δij
]}{

µ∞V∞

L2

}

(111)

{

ρ∞V 3
∞

L

}{

∂

∂t∗
ρ∗e∗ +

∂

∂x∗i
ρ∗
(

e∗ +
p∗

ρ∗

)

u∗i
}

=
∂

∂x∗i

(

K∗
tr
∂T ∗

tr

∂x∗i
+K∗

v
∂T ∗

v

∂x∗i

){

KNDT∞

L2

}

+

∂

∂x∗i

(

ρ∗
∑

h∗sD
∗
s
∂χs

∂x∗i

){

ρ∞V 2
∞DND

L2

}

+

∂

∂x∗i

[

u∗jµ∗

(

∂u∗j

∂x∗i
+

∂u∗i

∂x∗j

)

− u∗j
2

3
µ∗∂u

∗k

∂x∗k
δij
]{

µ∞V 2
∞

L2

}

(112)

{

ρ∞V∞

L

}{

∂ρ∗s
∂t∗

+
∂

∂x∗i
ρ∗su

∗i

}

=
∂

∂x∗i

(

ρ∗D∗
s
∂χs

∂x∗i

){

ρ∞DND

L2

}

+ {ω̇s}∗ (113)

{

ρ∞V 3
∞

L

}{

∂

∂t∗
ρe∗v +

∂

∂x∗i
ρ∗e∗vu

∗i

}

=
∂

∂x∗i

(

K∗
v
∂T ∗

v

∂x∗i

){

KNDT∞

L2

}

+

∂

∂x∗i

(

ρ∗
∑

h∗v,sD
∗
s
∂χs

∂x∗i

){

ρ∞V 2
∞DND

L2

}

+

∑

{

ρs
e∗v,s − ev,s

〈τs〉

}∗

+
∑

{ω̇sêv,s}∗ (114)

Canceling out the non-zero terms, these equations further simplify as follows:

∂ρ∗

∂t∗
+

∂

∂x∗i
ρ∗u∗i = 0 (115)

∂

∂t∗
ρ∗u∗j +

∂

∂x∗i
ρ∗u∗ju∗i +

∂p∗

∂x∗j
=

{

∂

∂x∗i

[

µ∗

(

∂u∗j

∂x∗i
+

∂u∗i

∂x∗j

)

−
2

3
µ∗∂u

∗k

∂x∗k
δij
]}{

µ∞

ρ∞V∞L

}

(116)

∂

∂t∗
ρ∗e∗ +

∂

∂x∗i
ρ∗
(

e∗ +
p∗

ρ∗

)

u∗i =
∂

∂x∗i

(

K∗
tr
∂T ∗

tr

∂x∗i
+K∗

v
∂T ∗

v

∂x∗i

){

KNDT∞

ρ∞V 3
∞L

}

+

∂

∂x∗i

(

ρ∗
∑

h∗sD
∗
s
∂χs

∂x∗i

){

DND

V∞L

}

+

∂

∂x∗i

[

u∗jµ∗

(

∂u∗j

∂x∗i
+

∂u∗i

∂x∗j

)

− u∗j
2

3
µ∗∂u

∗k

∂x∗k
δij
]{

µ∞

ρ∞V∞L

}

(117)
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∂ρ∗s
∂t∗

+
∂

∂x∗i
ρ∗su

∗i =
∂

∂x∗i

(

ρ∗D∗
s
∂χs

∂x∗i

){

DND

V∞L

}

+ {ω̇s}∗ (118)

∂

∂t∗
ρe∗v +

∂

∂x∗i
ρ∗e∗vu

∗i =
∂

∂x∗i

(

K∗
v
∂T ∗

v

∂x∗i

){

KNDT∞

ρ∞V 3
∞L

}

+

∂

∂x∗i

(

ρ∗
∑

h∗v,sD
∗
s
∂χs

∂x∗i

){

DND

V∞L

}

+

∑

{

ρs
e∗v,s − ev,s

〈τs〉

}∗

+
∑

{ω̇sêv,s}∗ (119)

In the above form, µ∞/ρ∞V∞L in Eqs. 116 and 117 is the inverse of the freestream

Reynolds number (Re∞). In order to eliminate the non-dimensionalizing factors for the

other transport terms, these must be unity. Therefore,

KNDT∞

ρ∞V 3
∞L

= 1 =⇒ KND =
ρ∞V 3

∞L

T∞
(120)

and

DND

V∞L
= 1 =⇒ DND = V∞L (121)

Thus, the final form of the non-dimensionalized equations are:

∂ρ∗

∂t∗
+

∂

∂x∗i
ρ∗u∗i = 0 (122)

∂

∂t∗
ρ∗u∗j +

∂

∂x∗i
ρ∗u∗ju∗i +

∂p∗

∂x∗j
=

∂

∂x∗i

[

µ∗

(

∂u∗j

∂x∗i
+

∂u∗i

∂x∗j

)

−
2

3
µ∗∂u

∗k

∂x∗k
δij
]

1

Re∞
(123)

∂

∂t∗
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∂x∗i
ρ∗
(

e∗ +
p∗
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)
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K∗
tr
∂T ∗

tr
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+K∗

v
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v
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)
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∂
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ρ∗
∑

h∗sD
∗
s
∂χs
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)

+

∂
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u∗jµ∗

(
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+
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)

− u∗j
2

3
µ∗∂u

∗k

∂x∗k
δij
]

1

Re∞
(124)

∂ρ∗s
∂t∗

+
∂

∂x∗i
ρ∗su

∗i =
∂

∂x∗i

(

ρ∗D∗
s
∂χs

∂x∗i

)

+ {ω̇s}∗ (125)
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∂

∂t∗
ρe∗v +

∂

∂x∗i
ρ∗e∗vu

∗i =
∂

∂x∗i

(

K∗
v
∂T ∗

v

∂x∗i

)

+
∂

∂x∗i

(

ρ∗
∑

h∗v,sD
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s
∂χs

∂x∗i

)

+

∑

{
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〈τs〉
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+
∑

{ω̇sêv,s}∗ (126)

where,

K∗
tr =

Ktr

ρ∞V 3
∞L/T∞

K∗
v =

Kv

ρ∞V 3
∞L/T∞

(127)

and

D∗
s =

Ds

V∞L
(128)
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